F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

when said multiple is odd, i.e. consubstantiated in 2 n + 1. Note that no need exists here to change also the form of the counting variable, because no upper limit for the summation was (deliberately) provided in Eq. (2.424)– unlike happened with Eqs. (2.388)and (2.407). For consistency between the linear expression on ι , the coefficients of ι ‐dependent and ‐independent terms in both sides of Eq. (2.425)must match – so one may write

(2.427) complemented with 2428 based specifically on Eq 2425 after - фото 535

complemented with

(2.428) based specifically on Eq 2425 after expressing 2 n 2 j 1 as 2 n - фото 536

– based specifically on Eq. (2.425), after expressing 2 n − (2 j + 1) as 2( nj ) − 1; and similarly

(2.429) coupled with 2430 stemming from Eq 2426 with convenient factoring - фото 537

coupled with

(2.430) stemming from Eq 2426 with convenient factoring out of 2 in both - фото 538

– stemming from Eq. (2.426), with convenient factoring out of 2 in both exponents. Note, in either case, the need for a linear combination of cross powers of sine and cosine – with cosine always requiring n + 1 terms, while sine requires n terms for an even multiple but n + 1 terms for an odd multiple; and the (preferred) use of x as argument rather than θ , thus calling for rad as units.

2.3.3 Fundamental Theorem of Trigonometry

Consider a right triangle, i.e. a triangle containing a right angle – as depicted in Fig. 2.11a. In Euclidean geometry, a fundamental relationship exists encompassing the three sides of any right triangle – namely, the square of the hypotenuse (or side opposite to the right angle), of length c , equals the sum of the squares of the other two sides, of lengths a and b . In other words,

(2.431) which is classically known as Pythagorean equation in honor to ancient Greek - фото 539

which is classically known as Pythagorean equation – in honor to ancient Greek mathematician Pythagoras (570–495 BCE), historically credited for its first (recorded) proof.

Figure 211 Illustration of Pythagoras theorem as a graphical statement and - фото 540

Figure 2.11 Illustration of Pythagoras’ theorem as (a) graphical statement, and graphical proof based on (b) combination of simple polygons or (c) relationships between similar triangles.

Despite the 400 + distinct proofs available, one may to advantage take four copies of a right triangle with sides a , b, and c – arranged inside a square with side c , as outlined in Fig. 2.11b; the triangles share their area, ab /2 (a formula to be derived in due course), and the smaller square has side ba . The area c 2(also to be derived) of the larger square may thus be given by

(2.432) where b a 2represents the area of the smaller square expansion of the - фото 541

where ( ba ) 2represents the area of the smaller square; expansion of the square of the binomial in the right‐hand side as per Eq. (2.238), followed by lumping of constants between numerator and denominator in the last term unfold

(2.433) whereas cancelation of symmetrical terms immediately retrieves Eq 2431 - фото 542

– whereas cancelation of symmetrical terms immediately retrieves Eq. (2.431).

One may alternatively resort to the proportionality of the sides of two similar triangles; let [ ABC ] accordingly represent a right triangle, with the right angle located at C – as per Fig. 2.11c. After drawing an altitude from point C toward side [ AB ], and denoting its intersection with said side as D , one ends up with point D dividing the hypotenuse [ AB ] into segments [ AD ] and [ BD ]. The new triangle [ ACD ] is similar to triangle [ ABC ], because they both have a right angle – at C in [ ABC ] (by hypothesis) and at D in [ ACD ] (by definition of altitude), and they share angle θ at A ; therefore, the remaining angles must be identical, since the angles of a triangle always add up to π rad (see also proof at a later stage). By the same token, triangle [ BCD ] is similar to [ ABC ] – since they share the angle at B , and they both have a right angle, i.e. ∠ BDC and ∠ ACB , respectively. Remember that similarity of triangles enforces equality of ratios of the corresponding sides, i.e.

(2.434) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 543

relating length of sides in [ BCD ] and [ ABC ] opposed to right angle as left‐hand side, and relating length of sides also in [ BCD ] and [ ABC ] opposed to angle of amplitude θ (note the mutually perpendicular sides of said angles) as right‐hand side; coupled with

(2.435) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 544

relating length of sides in triangles [ ACD ] and [ ABC ] opposed to the right angle as left‐hand side, and relating length of sides also in [ ACD ] and [ ABC ] opposed to angle of amplitude ππ /2 − θ = π /2 − θ as right‐hand side. Equation (2.434)may be rewritten as

(2.436) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 545

upon elimination of denominators – and a similar result, viz.

(2.437) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 546

can be produced from Eq. (2.435); ordered addition of Eqs. (2.436)and (2.437)unfolds

(2.438) where may in turn be factored out to give 2439 - фото 547

where may in turn be factored out to give 2439 Since BD and AD are - фото 548may, in turn, be factored out to give

(2.439) Since BD and AD are consecutive straight segments Eq 2439is - фото 549

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x