F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.3.4 Inverse Functions

In attempts to solve equations explicitly involving trigonometric functions, one may to advantage resort to their inverse functions; this includes sin −1 x , which develops graphically as outlined in Fig. 2.13a. Only the portion of sin −1 x between −π /2 and π /2 – corresponding to x within interval [ 1,1], is normally considered, as indicated in bold in Fig. 2.13a; otherwise a function would not result, since more than one value would be taken by the dependent variable for any given value of the independent variable. By the same token, one may define the inverse of cosine, cos −1 x – as also plotted in Fig. 2.13a; in this case, one usually restricts to cos −1 x between 0 and π , which corresponds to x spanning also interval [ 1,1]. Note that the curves representing inverse functions may be obtained through rotation of the original curves by π rad around the bisectrix of the odd quadrants – see Fig. 2.13a vis‐à‐vis with Fig. 2.10b.

A similar rationale may be pursued to obtain the inverse tangent and cotangent, i.e. tan −1 x and cotan −1 x ; these are plotted in Fig. 2.13b. In both cases, argument x spans the whole real axis – but one usually restricts attention to the portion comprised between −π /2 and π /2 in the case of tan −1 x , and to the portion comprised between 0 and π in the case of cotan −1 x , so as to back up true (i.e. single‐valued) functions.

2.4 Hyperbolic Functions

Exponential functions are quite useful in process engineering problems; solutions to differential equations involving an exponential of a given argument, and simultaneously of its negative are indeed frequently found. Therefore, a set of functions termed hyperbolic functions has been designed to assist in the associated modeling; coincidentally, they satisfy most operational relationships of trigonometric functions, and have accordingly also been termed hyperbolic trigonometric functions.

2.4.1 Definition and Major Features

The two basic hyperbolic functions are the hyperbolic sine, sinh x , defined as

(2.472) and the hyperbolic cosine cosh x abiding to 2473 the plots of Eqs - фото 591

and the hyperbolic cosine, cosh x , abiding to

(2.473) the plots of Eqs 2472and 2473are provided in Fig 214a Note the even - фото 592

the plots of Eqs. (2.472)and (2.473)are provided in Fig. 2.14a. Note the even nature of cosh x , i.e.

(2.474) with the aid of Eq 2473 in contrast to the odd nature of sinh x - фото 593

with the aid of Eq. (2.473); in contrast to the odd nature of sinh x , according to

(2.475) as per Eq 2472 The curves representing these two functions overlap at - фото 594

as per Eq. (2.472). The curves representing these two functions overlap at large x , i.e.

(2.476) stemming from Eqs 2472and 2473 as emphasized in Fig 214a with the - фото 595

stemming from Eqs. (2.472)and (2.473), as emphasized in Fig. 2.14a (with the exact concept of limit coming soon); while there is a unit minimum value of cosh x at x = 0, viz.

(2.477) based on Eq 2473 with derivation rules to be introduced in due course - фото 596

based on Eq. (2.473)– with derivation rules to be introduced in due course.

Figure 214 Variation with their argument x of major hyperbolic functions - фото 597

Figure 2.14 Variation, with their argument x , of major hyperbolic functions, (a) hyperbolic sine (sinh) and cosine (cosh), (b) hyperbolic tangent (tanh) and cotangent (cotanh), and (c) hyperbolic secant (sech) and cosecant (cosech).

On the other hand, ordered addition of Eqs. (2.472)and (2.473), viz.

(2.478) along with cancelation of symmetrical terms lead to 2479 while ordered - фото 598

along with cancelation of symmetrical terms lead to

(2.479) while ordered subtraction of Eq 2472from Eq 2473yields 2480 since - фото 599

while ordered subtraction of Eq. (2.472)from Eq. (2.473)yields

(2.480) since e x2 cancels out with its negative or simply 2481 Equations - фото 600

since e x/2 cancels out with its negative – or simply

(2.481) Equations 2479and 2481are expected in view of cosh x being an even - фото 601

Equations (2.479)and (2.481)are expected, in view of cosh x being an even function and sinh x being an odd function – as per Eqs. (2.474)and (2.475), respectively, coupled with Eq. (2.1).

The remaining functions of practical interest include the hyperbolic tangent, tanh x , defined as

(2.482) at the expense of Eqs 2472and 2473 after dropping 2 from both - фото 602

– at the expense of Eqs. (2.472)and (2.473), after dropping 2 from both numerator and denominator; as well as its reciprocal, the hyperbolic cotangent, cotanh x , according to

(2.483) with the aid of Eq 2482 both of which are depicted in Fig 214b Note the - фото 603

with the aid of Eq. (2.482)– both of which are depicted in Fig. 2.14b. Note the monotonically increasing pattern of tanh x , with

(2.484) serving as leftward horizontal asymptote based on Eq 2482 complemented by - фото 604

serving as leftward horizontal asymptote based on Eq. (2.482), complemented by

(2.485) serving as rightward horizontal asymptote along with the decreasing behavior - фото 605

serving as rightward horizontal asymptote; along with the decreasing behavior of cotanh x , despite the discontinuity at x = 0, i.e.

(2.486) stemming from Eq 2483 which accordingly justifies why the vertical axis - фото 606

stemming from Eq. (2.483)– which accordingly justifies why the vertical axis plays the role of vertical asymptote.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x