F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance

Здесь есть возможность читать онлайн «F. Xavier Malcata - Mathematics for Enzyme Reaction Kinetics and Reactor Performance» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance
Enzyme Reactor Engineering
The second volume begins with an introduction to basic concepts in calculus, i.e. limits, derivatives, integrals and differential equations; limits, along with continuity, are further expanded afterwards, covering uni- and multivariate cases, as well as classical theorems. After recovering the concept of differential and applying it to generate (regular and partial) derivatives, the most important rules of differentiation of functions, in explicit, implicit and parametric form, are retrieved – together with the nuclear theorems supporting simpler manipulation thereof. The book then tackles strategies to optimize uni- and multivariate functions, before addressing integrals in both indefinite and definite forms. Next, the book touches on the methods of solution of differential equations for practical applications, followed by analytical geometry and vector calculus. Brief coverage of statistics–including continuous probability functions, statistical descriptors and statistical hypothesis testing, brings the second volume to a close.

Mathematics for Enzyme Reaction Kinetics and Reactor Performance — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mathematics for Enzyme Reaction Kinetics and Reactor Performance», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

By the same token, the hyperbolic secant, sech x , abides to

(2.487) after resorting to Eq 2473 while the corresponding hyperbolic cosecant - фото 607

after resorting to Eq. (2.473); while the corresponding hyperbolic cosecant, cosech x , looks like

(2.488) once Eq 2472is retrieved and as plotted in Fig 214c When x approaches - фото 608

once Eq. (2.472)is retrieved – and as plotted in Fig. 2.14c. When x approaches zero, the hyperbolic cosecant is driven by

(2.489) arising from Eq 2488 so x 0 plays the role of vertical asymptote for - фото 609

arising from Eq. (2.488), so x = 0 plays the role of vertical asymptote for this function; as for the remaining values, cosech x monotonically decreases within] −∞, 0[ and also within]0 ,∞ [, as can be grasped in Fig. 2.14c. Conversely,

(2.490) based on Eq 2487 so the horizontal axis serves as horizontal asymptote - фото 610

based on Eq. (2.487)– so the horizontal axis serves as horizontal asymptote toward −∞, whereas

(2.491) indicates that the very same straight line serves as horizontal asymptote - фото 611

indicates that the very same straight line serves as (horizontal) asymptote toward ∞. In this case, there is a maximum at x = 0 – since d sech x / dx = − 2(e x− e −x)/(e x + e −x) 2(to be fully proven at a later stage) equals zero when e x = e −x, or else at x = 0; this critical point is easily perceived in Fig. 2.14c. Finally, note the resemblance between the functional form of Eqs. (2.482)and (2.483)with Eqs. (2.299)and (2.304), respectively – as well as between Eqs. (2.487)and (2.488), on the one hand, and Eqs. (2.309)and (2.314), on the other; this contributes to justify the denomination of (hyperbolic) trigonometric functions.

After squaring both sides of Eqs. (2.472)and (2.473), and then performing ordered subtraction of the result, one obtains

(2.492) where Newtons binomial as per Eqs 2237and 2238may be invoked to write - фото 612

– where Newton’s binomial as per Eqs. (2.237)and (2.238)may be invoked to write

(2.493) or equivalently 2494 because e xe x e xx e 0 1 after canceling - фото 613

or, equivalently,

(2.494) because e xe x e xx e 0 1 after canceling symmetrical terms Eq - фото 614

because e xe −x = e x−x = e 0 = 1; after canceling symmetrical terms, Eq. (2.494)becomes

(2.495) that readily simplifies to 2496 which reminds of Eq 2442pertaining - фото 615

that readily simplifies to

(2.496) which reminds of Eq 2442pertaining to circular functions proper except - фото 616

– which reminds of Eq. (2.442)pertaining to circular functions proper (except for the minus sign). If Eqs. (2.472)and (2.473)are instead multiplied by one another, i.e.

(2.497) one finds that 2498 with the aid of the distributive property or else - фото 617

one finds that

(2.498) with the aid of the distributive property or else 2499 after lumping - фото 618

with the aid of the distributive property – or else

(2.499) after lumping factors alike and canceling out symmetrical terms if Eq - фото 619

after lumping factors alike and canceling out symmetrical terms; if Eq. (2.499)is rewritten as

(2.500) then comparison with Eq 2472allows further reformulation to 2501 that - фото 620

then comparison with Eq. (2.472)allows further reformulation to

(2.501) that is equivalent to 2502 identical in form to Eq 2328 after - фото 621

that is equivalent to

(2.502) identical in form to Eq 2328 after setting x y This similarity - фото 622

– identical in form to Eq. (2.328), after setting x = y . This similarity further accounts for the extra labeling of trigonometric ascribed to the hyperbolic functions.

If Eqs. (2.472)and (2.473)are instead employed in parametric form, viz.

(2.503) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 623

coupled with

(2.504) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 624

one may square both sides of Eqs. (2.503)and (2.504)– and then proceed to ordered subtraction thereof to get

(2.505) after factoring a 2out Eq 2505becomes 2506 while insertion of Eq - фото 625

after factoring a 2out, Eq. (2.505)becomes

(2.506) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 626

while insertion of Eq. (2.496)supports simplification to

(2.507) Mathematics for Enzyme Reaction Kinetics and Reactor Performance - изображение 627

Equation (2.507)is but the analytical equation of a hyperbola – thus backing up the hyperbolic designation for the functions under scrutiny.

Once in possession of Eq. (2.496), one may divide both its sides by sinh 2 x to get

(2.508) where insertion of Eqs 2482 2483 and 2488gives rise to 2509 if - фото 628

where insertion of Eqs. (2.482), (2.483), and (2.488)gives rise to

(2.509) if both sides of Eq 2496were instead divided by cosh 2 x one would have - фото 629

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Представляем Вашему вниманию похожие книги на «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance»

Обсуждение, отзывы о книге «Mathematics for Enzyme Reaction Kinetics and Reactor Performance» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x