Alvaro Meseguer - Fundamentals of Numerical Mathematics for Physicists and Engineers

Здесь есть возможность читать онлайн «Alvaro Meseguer - Fundamentals of Numerical Mathematics for Physicists and Engineers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Numerical Mathematics for Physicists and Engineers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Numerical Mathematics for Physicists and Engineers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Introduces the fundamentals of numerical mathematics and illustrates its applications to a wide variety of disciplines in physics and engineering Applying numerical mathematics to solve scientific problems, this book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain techniques for solving a given problem. It also contains examples related to problems arising in classical mechanics, thermodynamics, electricity, and quantum physics.
Fundamentals of Numerical Mathematics for Physicists and
Engineers
Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section  is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.

Fundamentals of Numerical Mathematics for Physicists and Engineers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Numerical Mathematics for Physicists and Engineers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Convergence (Practical): A sequence картинка 203is said to be converged to the desired tolerance Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 204after Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 205iterations if Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 206, картинка 207.

The criterion above only refers to the convergence of a sequence, and not necessarily to the convergence to a root. After an iterative method has apparently converged to some stagnated value картинка 208, it is always advisable to check the magnitude of картинка 209in order to confirm if the method has succeeded. The code below is a simple implementation of the bisection method using the tolerance criterion previously described:

% Code 1: Bisection method for solving f(x) = 0 in [a,b] % Input: 1. [a,b]: interval (it assumes that f(a)f(b) < 0) % 2. tol: tolerance so that abs(x_k+1 - x_k) < tol % 3. itmax: maximum number of iterations allowed % 4. fun: function's name % Output: 1. xk: resulting sequence % 2. res: resulting residuals % 3. it: number of required iterations function [xk,res,it] = bisection(a,b,tol,itmax,fun) ak = a; bk = b; xk = []; res = []; it = 0; tolk = abs(bk-ak)/2 ; while it < itmax & tolk > tol ck = (ak + bk)/2; xk = [xk ck]; if it > 0; tolk = abs(xk(end)-xk(end-1)); end fa = feval(fun,ak); fc = feval(fun,ck); res = [res abs(fc)]; if fc*fa < 0; bk = ck; else ak = ck; end it = it + 1 ; end

In the previous code, the iterations stop either when the number of iterations reaches itmaxor when Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 210 tol, i.e. the condition for practical convergence. This condition therefore provides what is usually known as a stopping criterion for root‐finding methods such as the bisection and other algorithms. However, two words of caution deserve to be mentioned at this point. First, we are implicitly assuming that since Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 211seems to be a Cauchy Sequence 6 (that is, Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 212decreases with increasing картинка 213), its convergence is guaranteed. While a convergent sequence must necessarily be of Cauchy type, the reverse statement is, in general, not true (although here it will be assumed to be). Second, the quantity Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 214has disappeared from the convergence criteria. In other words, once Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 215for some картинка 216and beyond, we only know that the sequence has converged (in the practical sense) to some value картинка 217, that henceforth will play the role of the numerical root within the prescribed tolerance.

Finally, the bisection code also provides the vector rescontaining the sequence of absolute quantities картинка 218, usually called the residuals . Since this quantity should approach zero when картинка 219converges to a root, the reader may wonder why картинка 220should not be used as a measure for stopping the iterations. The reason is that the residual is not always a reliable measure (although it is often used in practice to decide convergence). We will address this question later in this chapter, when we introduce the concept of condition number of a root .

1.3 Newton's Method

Newton's method , also known as Newton–Raphson method , 7 is probably the most important root‐finding algorithm of numerical mathematics. Its formulation naturally leads to a wide variety of other root‐finding algorithms and is easily adaptable to solving systems of nonlinear equations. 8 To formulate this method we will assume that картинка 221is differentiable and that the root is close to some initial guess картинка 222. To get a better estimation of the root we assume that, close to картинка 223, the function Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 224can be approximated by its tangent line Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 225at the point Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 226plotted in gray below. In other words, we locally approximate картинка 227by its first order Taylor expansion at 16 - фото 228at 16 where - фото 229:

16 where is the value of the derivative of - фото 230

(1.6) where is the value of the derivative of at - фото 231

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Numerical Mathematics for Physicists and Engineers»

Представляем Вашему вниманию похожие книги на «Fundamentals of Numerical Mathematics for Physicists and Engineers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Numerical Mathematics for Physicists and Engineers»

Обсуждение, отзывы о книге «Fundamentals of Numerical Mathematics for Physicists and Engineers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x