Alvaro Meseguer - Fundamentals of Numerical Mathematics for Physicists and Engineers
Здесь есть возможность читать онлайн «Alvaro Meseguer - Fundamentals of Numerical Mathematics for Physicists and Engineers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.
- Название:Fundamentals of Numerical Mathematics for Physicists and Engineers
- Автор:
- Жанр:
- Год:неизвестен
- ISBN:нет данных
- Рейтинг книги:5 / 5. Голосов: 1
-
Избранное:Добавить в избранное
- Отзывы:
-
Ваша оценка:
Fundamentals of Numerical Mathematics for Physicists and Engineers: краткое содержание, описание и аннотация
Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Numerical Mathematics for Physicists and Engineers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.
Fundamentals of Numerical Mathematics for Physicists and
Engineers
Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.
is the value of the derivative of
at
. The motivation for approximating
by
is simple: if
is a reasonably good approximation of
, then the solution of
should be a reasonable good estimation of the solution of
. Let
be the solution of
satisfying
where
intercepts the
‐axis is the new (hopefully more accurate) estimation of the root. The process can be repeated approximating
by its Taylor expansion
at
(straight gray line below the curve) in order to obtain an even better estimation
satisfying

as starting point, instead of an interval. Second, in addition to the string name corresponding to the M‐file function
in the argument
by the ratio
is a small increment (
in our code). This approximation of the derivative, along with the suitability of the chosen
, will be properly justified later in the chapter devoted to numerical differentiation. 9 The reader may check that there are no noticeable differences when using either the exact or the approximate derivative ( 1.10).
. The first two columns of Table 1.1outline the sequences
and
resulting from the bisection and Newton–Raphson methods, respectively. While the bisection method requires almost 50 iterations to achieve full accuracy, Newton's method does the same job in just 5. In fact, Newton–Raphson's sequence nearly doubles the number of converged digits from one iterate to the next, whereas in the bisection sequence this number grows very slowly (and sometimes even decreases, as seen from
to 6). This is better understood when looking at the third and fourth columns of Table 1.1, where we have included the absolute error corresponding to both methods
, where
is the reference value given in the exact expression ( 1.3), and whose numerical evaluation with Matlab is
.