Alvaro Meseguer - Fundamentals of Numerical Mathematics for Physicists and Engineers

Здесь есть возможность читать онлайн «Alvaro Meseguer - Fundamentals of Numerical Mathematics for Physicists and Engineers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Numerical Mathematics for Physicists and Engineers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Numerical Mathematics for Physicists and Engineers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Introduces the fundamentals of numerical mathematics and illustrates its applications to a wide variety of disciplines in physics and engineering Applying numerical mathematics to solve scientific problems, this book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain techniques for solving a given problem. It also contains examples related to problems arising in classical mechanics, thermodynamics, electricity, and quantum physics.
Fundamentals of Numerical Mathematics for Physicists and
Engineers
Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section  is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.

Fundamentals of Numerical Mathematics for Physicists and Engineers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Numerical Mathematics for Physicists and Engineers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where картинка 232is the value of the derivative of картинка 233at картинка 234. The motivation for approximating картинка 235by картинка 236is simple: if картинка 237is a reasonably good approximation of картинка 238, then the solution of картинка 239should be a reasonable good estimation of the solution of картинка 240. Let be the solution of satisfying 17 The resulting abscissa - фото 241be the solution of satisfying 17 The resulting abscissa where - фото 242satisfying

(1.7) The resulting abscissa where intercepts the - фото 243

The resulting abscissa картинка 244where картинка 245intercepts the картинка 246‐axis is the new (hopefully more accurate) estimation of the root. The process can be repeated approximating картинка 247by its Taylor expansion картинка 248at картинка 249(straight gray line below the curve) in order to obtain an even better estimation satisfying 18 and so on leading to the iterative formula Newtons - фото 250satisfying

(1.8) and so on leading to the iterative formula Newtons Iteration 19 A - фото 251

and so on, leading to the iterative formula:

Newton's Iteration:

(1.9) A simple implementation of Newtons method can be found in the next code whose - фото 252

A simple implementation of Newton's method can be found in the next code, whose structure essentially differs from the one seen in the bisection in two main aspects. First, the code needs an initial guess картинка 253as starting point, instead of an interval. Second, in addition to the string name corresponding to the M‐file function fun, the code also needs the one associated with картинка 254in the argument dfun. Providing the M‐file for the exact derivative entails both analytical differentiation and its subsequent programming, both being error‐prone tasks. While this is the correct procedure, it is sometimes advisable to let the computer do the job by approximating the value of by the ratio 110 where is a small increment - фото 255by the ratio

(1.10) where is a small increment in our code This approximation of the d - фото 256

where картинка 257is a small increment ( картинка 258in our code). This approximation of the derivative, along with the suitability of the chosen картинка 259, will be properly justified later in the chapter devoted to numerical differentiation. 9 The reader may check that there are no noticeable differences when using either the exact or the approximate derivative ( 1.10).

% Code 2: Newton's method for solving f(x) = 0 % Input: 1. a: initial guess % 2. tol: tolerance so that abs(x_k+1 - x_k) < tol % 3. itmax: maximum number of iterations allowed % 4. fun: function's name % 5. dfun: derivative's name % (If dfun = ‘0’, then f'(x) is approximated) % Output: 1. xk: resulting sequence % 2. res: resulting residuals % 3. it: number of required iterations function [xk,res,it] = newton(a,tol,itmax,fun,dfun) xk = [a]; fk = feval(fun,xk); res = abs(fk); it = 0; tolk = res(1); dx = 1e-8 ; while it < itmax & tolk > tol if dfun == ‘0’ dfk = (feval(fun,xk(end)+dx)-fk)/dx; else dfk = feval(dfun,xk(end)); end xk = [xk, xk(end) - fk/dfk]; fk = feval(fun,xk(end)); res = [res abs(fk)]; tolk = abs(xk(end)-xk(end-1)); it = it + 1; end

Let us compare the performance of Newton's method with the bisection by applying both algorithms to solve the cubic equation ( 1.2) starting from the same initial guess картинка 260. The first two columns of Table 1.1outline the sequences картинка 261and картинка 262resulting from the bisection and Newton–Raphson methods, respectively. While the bisection method requires almost 50 iterations to achieve full accuracy, Newton's method does the same job in just 5. In fact, Newton–Raphson's sequence nearly doubles the number of converged digits from one iterate to the next, whereas in the bisection sequence this number grows very slowly (and sometimes even decreases, as seen from Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 263to 6). This is better understood when looking at the third and fourth columns of Table 1.1, where we have included the absolute error corresponding to both methods Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 264, where Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 265is the reference value given in the exact expression ( 1.3), and whose numerical evaluation with Matlab is Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 266.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Numerical Mathematics for Physicists and Engineers»

Представляем Вашему вниманию похожие книги на «Fundamentals of Numerical Mathematics for Physicists and Engineers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Numerical Mathematics for Physicists and Engineers»

Обсуждение, отзывы о книге «Fundamentals of Numerical Mathematics for Physicists and Engineers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x