Alvaro Meseguer - Fundamentals of Numerical Mathematics for Physicists and Engineers

Здесь есть возможность читать онлайн «Alvaro Meseguer - Fundamentals of Numerical Mathematics for Physicists and Engineers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Numerical Mathematics for Physicists and Engineers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Numerical Mathematics for Physicists and Engineers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Introduces the fundamentals of numerical mathematics and illustrates its applications to a wide variety of disciplines in physics and engineering Applying numerical mathematics to solve scientific problems, this book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain techniques for solving a given problem. It also contains examples related to problems arising in classical mechanics, thermodynamics, electricity, and quantum physics.
Fundamentals of Numerical Mathematics for Physicists and
Engineers
Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section  is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.

Fundamentals of Numerical Mathematics for Physicists and Engineers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Numerical Mathematics for Physicists and Engineers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Complementary Reading

For an authoritative study of different root‐finding methods for nonlinear scalar equations, I strongly recommend Dahlquist and Björk's Numerical Methods in Scientific Computing , Vol. I. The reader will find there detailed mathematical proofs of the convergence of many algorithms, as well as other very important topics that have not been covered in this chapter, such as Fixed‐Point Iteration , Minimization or the solution of algebraic equations and deflation . That chapter also addresses the Termination Criteria problem (i.e. when to stop the iteration) in depth and with mathematical rigor.

For a different approach to the root‐finding problem, Acton's Numerical Methods that Work is an alternative. The reader will find in that text very clear geometrical explanations of why different root‐finding methods may have convergence problems. Acton's book also provides deep insight into the technical aspects of root‐finding algorithms, as well as very useful tips and strategies.

Practical 1.2 Throwing Balls and Conditioning

A ball is thrown from the lowest point of a hill Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 528with initial angle Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 529and speed Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 530(see the figure below). The height of the hill is given by the expression Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 531, where Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 532and Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 533are measured in meters, Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 534, and Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 535.

1 Edit a Matlab m function corresponding to the equation whose solution is the - фото 536

1 Edit a Matlab .m function corresponding to the equation whose solution is the abscissa where the parabola and the hill's profile intersect (for arbitrary initial speed and angle and , respectively).

2 Using Newton's method, find the abscissa of the point A where the ball impacts with the hill. Provide your result with at least five exact figures.

3 With the same initial speed, represent the impact abscissa for initial angles within the range .

4 Find the minimum initial angle that allows the ball to impact beyond , i.e. to the right of the hill's peak. Provide your result with at least three exact figures.

5 Explore the order of convergence of the root‐finding method when computing the minimum angle in (d). Do you observe an increase in the number of iterations required to achieve the desired accuracy? If so, explain what may be the reason for that phenomenon.

Problems and Exercises

The symbol (A) means that the problem has to be solved analytically, whereas (N) means to use numerical Matlab codes. Problems with the symbol * are slightly more difficult.

1 1. (A) Consider the bisection method starting from the interval . Let be the resulting bisection sequence satisfying . Let be a given tolerance.How many iterations are required in order to satisfy that ?Once that tolerance has been reached, how many iterations should be added to have one more digit of precision?

2 2. (N) Apply the bisection algorithm to solve the equations over the intervals indicated below. Provide the numerical approximation of the root with at least 10 significant digits and also report how many bisections were required to achieve that accuracy., ., ., .

3 3. (A) Show that the chord method starting within the interval with has linear convergence to the root and obtain its corresponding asymptotic error constant . If for linear convergence, what constraints does this condition impose? Will the method converge linearly to a double root?

4 4. (A)* Show that the secant method converges superlinearly with order of convergence . As a hint, use Taylor's expansion to show that the errors obey (to the lowest order) the recurrence: .Next, assume that the absolute error obeys the relation , with in order to provide the value of the exponent as well as the asymptotic error constant .

5 5. (N) Using your own codes for the chord and secant methods, solve the equation starting from the interval and reproduce the results of Figure 1.2b.

6 6. (N) Regula Falsi or false position method: this root‐finding algorithm is in essence a globally convergent version of the secant method. Starting from the interval satisfying , proceed with the iterationwhere is the last iterate satisfying , that is,You need to modify your secant method code by storing the history of the iterates in order to include the condition above.Solve again the cubic starting from the interval and compute its local order of convergence based on the sequence obtained. What order can you identify?Solve (see Figure 1.4b) starting from initial intervals containing either or and convince yourself that the method is globally convergent within those intervals. In particular, verify for a few values of that .

7 7. (A) Applying Newton's method to a certain equation leads to the iteration , with . Find the original equation or, equivalently, find the purpose of such iteration and its corresponding limit .

8 8. (A) We apply Newton's method to solve starting from . How many iterations are required to obtain the root with an error of ? Solve the problem analytically. After that, verify your estimation numerically.

9 9. (A) For , find the value of the quantity Hint: is the limit of the sequence

10 10. (A–N) One technique to accelerate Newton's method for roots of multiplicity consists of replacing the original equation by the auxiliary one , where .If is a root of with multiplicity , find the limit .If the modified Newton's iteration using the auxiliary equation reads , find .If we use the original Newton's method to solve starting from , find the minimum number of iterations such that .Repeat (c) using the auxiliary equation.

11 11. (A–N) Steffensen's root‐finding method is given by the iterationStarting from the initial guess , apply the method to solve . What order of convergence can you identify?Solve starting also from . Do you observe the same exponent as in part (a)?(*) Find the exact order of convergence of the method for simple roots, as well as its corresponding asymptotic constant.

12 12. (A–N) Halley's 13 root‐finding method is an algorithm that improves Newton's quadratic convergence when solving . In this case, the method solves the auxiliary equation , where and is assumed to be positive and differentiable within the domain containing the root.Find the resulting iterative formula in terms of , , and .Find the root of within using Halley's method starting from . Can you identify the order of convergence ?

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Numerical Mathematics for Physicists and Engineers»

Представляем Вашему вниманию похожие книги на «Fundamentals of Numerical Mathematics for Physicists and Engineers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Numerical Mathematics for Physicists and Engineers»

Обсуждение, отзывы о книге «Fundamentals of Numerical Mathematics for Physicists and Engineers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x