Alvaro Meseguer - Fundamentals of Numerical Mathematics for Physicists and Engineers

Здесь есть возможность читать онлайн «Alvaro Meseguer - Fundamentals of Numerical Mathematics for Physicists and Engineers» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Numerical Mathematics for Physicists and Engineers: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Numerical Mathematics for Physicists and Engineers»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Introduces the fundamentals of numerical mathematics and illustrates its applications to a wide variety of disciplines in physics and engineering Applying numerical mathematics to solve scientific problems, this book helps readers understand the mathematical and algorithmic elements that lie beneath numerical and computational methodologies in order to determine the suitability of certain techniques for solving a given problem. It also contains examples related to problems arising in classical mechanics, thermodynamics, electricity, and quantum physics.
Fundamentals of Numerical Mathematics for Physicists and
Engineers
Provides a modern perspective of numerical mathematics by introducing top-notch techniques currently used by numerical analysts Contains two parts, each of which has been designed as a one-semester course Includes computational practicals in Matlab (with solutions) at the end of each section for the instructor to monitor the student's progress through potential exams or short projects Contains problem and exercise sets (also with solutions) at the end of each section  is an excellent book for advanced undergraduate or graduate students in physics, mathematics, or engineering. It will also benefit students in other scientific fields in which numerical methods may be required such as chemistry or biology.

Fundamentals of Numerical Mathematics for Physicists and Engineers — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Numerical Mathematics for Physicists and Engineers», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 14a Convergence history of Newtons and secant methods when the - фото 494

Figure 1.4(a) Convergence history of Newton's and secant methods when the sequences approach the double root of equation The ordinates corresponding to the secant method triangles hav - фото 495of equation The ordinates corresponding to the secant method triangles have been - фото 496. The картинка 497ordinates corresponding to the secant method (triangles) have been shifted downwards three units to avoid overlap between the two sets of data and help visualize. (b) Newton's method iterates for the solution of Figure 14a shows the result of applying Newtons and secant methods to find - фото 498.

Figure 1.4a shows the result of applying Newton's and secant methods to find the double ill‐conditioned root of the equation studied in Section 16 Newtons iteration is started from w - фото 499of the equation studied in Section 16 Newtons iteration is started from whereas the secant - фото 500studied in Section 1.6. Newton's iteration is started from картинка 501, whereas the secant has been initialized from the interval картинка 502that contains the root. The reader may check that in this case Newton's and secant methods lose their quadratic and golden ratio orders, respectively, both exhibiting linear convergence, as shown in Figure 1.4a. Double or ill‐conditioned roots appear in physics more frequently than one may expect, particularly in problems where the transcendental equation to be solved is the result of imposing some kind of critical or threshold condition (we refer the reader to Practical 1.2, for example).

In general, root‐finding methods converge to the desired solution only if the initial guess картинка 503is really close to the sought root, i.e. most of the methods are just locally convergent . In practice, a root‐finding algorithm starting from an initial guess картинка 504moderately far away from the root could easily lead to a sequence картинка 505that may wander from one point to another of the real axis, eventually diverging to infinity or converging to a solution (not necessarily the sought one). Figure 1.4b illustrates this phenomenon by showing the result of computing the roots of the function Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 506using Newton's method starting from different initial guesses. The first two roots of картинка 507are located at картинка 508and картинка 509(black bullets in Figure 1.4b). In this example, we initialize Newton's method from two initial guesses reasonably close (but not too close) to картинка 510. To guide the eye, we have indicated the history of each of the two sequences by encircled numbering of their ordinates. The first sequence starts at картинка 511(gray square) and Newton's first iterate картинка 512is already very close to картинка 513, to which the sequence eventually converges (gray dashed lines and symbols). The second sequence starts from картинка 514(white diamond), unfortunately leading to a location картинка 515where Newton's algorithm predicts a negative second iterate картинка 516, which is not even within the function's domain due to the logarithmic term.

From the previous example we can conclude that forecasting the fate of a Newton's sequence based on the location of the initial guess картинка 517is usually impossible. In the first case, we may have naturally expected the sequence to approach картинка 518instead of картинка 519(because of its initial proximity to the former one). In the second case, we could have also naturally expected the sequence to converge at least to either one of the two roots, but never such a dramatic failure of the iteration. We recommend the reader to explore the complex convergence properties of Newton's method by starting the iteration from a wide range of initial guesses located between картинка 520and картинка 521. The reader may also repeat the experiment with the secant or chord algorithms to conclude that the behavior of the sequences is also unpredictable when using these methods.

Under particular circumstances, there are certain root‐finding methods that always converge to the same root, regardless of the initial guess from which they have been started. In general, for a given function картинка 522with a unique root картинка 523in the open interval Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 524, a root‐finding method is said to be globally convergent within Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 525if Fundamentals of Numerical Mathematics for Physicists and Engineers - изображение 526for all initial guesses картинка 527. The bisection method or the Regula Falsi 12 method are examples of globally convergent algorithms. However, these and other univariate globally convergent methods are not always easily adaptable to solve systems of nonlinear equations.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Numerical Mathematics for Physicists and Engineers»

Представляем Вашему вниманию похожие книги на «Fundamentals of Numerical Mathematics for Physicists and Engineers» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Numerical Mathematics for Physicists and Engineers»

Обсуждение, отзывы о книге «Fundamentals of Numerical Mathematics for Physicists and Engineers» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x