2 Chapter 3 TABLE 3-1 Types of Visualizations and Uses TABLE 3-1 Types of Visualizations and Uses Type Use Comparison Compare two or more values on an XY axis. Examples: timeline, trend, ranking Types: line, column, bar, timeline Composition Show how the parts relate to the whole. Examples: revenue of product mix over time, breakdown of demographic data across the range of a variable Types: stacked bars/columns, pie/donut, stacked area, waterfall, polar Distribution Show the value of one variable tracked across a set of categories. Examples: sales across regions or stores, age ranges in demographic Types: histogram, line, area, scatter plot, map Relationship Show the connection between two or more variables. Examples: track revenue versus cost across regions or stores, show traffic or accident incidents by weather or time of day Types: scatter, bubble, line One way to do that is a bar chart, either vertical or horizontal. One axis displays the collection of categories or ranges and the other the quantity, rank, or another metric. Another way is to have the X axis represent one variable and the Y axis represent a different variable, and then plot the data points. The data points can even use bubble size to represent a third variable, packing information into a simple visualization that conveys lots of information in a glance. Figure 3-1 shows the number of page visits on the X axis, the duration of the visit on the Y axis, and income band by the size of the bubble.
TABLE 3-2 Pyramid of Critical Success Factors for AI and Analytics TABLE 3-2 Pyramid of Critical Success Factors for AI and Analytics Element Questions AI How will you address analytical deployment, governance, and operations? Experimentation ML Does machine learning add business value? How do you define success? BI / Analytics What is the story your data is telling? What conclusions can you make from this information? Explore and Enrich Can the data be used meaningfully? Are you missing any data or features? Data Access Is the data accessible and usable (analysis-ready)? Is the data flow reliable? Data Collection Do you have data relevant to your business goals?
TABLE 3-3 Types of Dirty Data TABLE 3-4 Unsupervised Learning Algorithms TABLE 3-5 Supervised Learning Algorithms TABLE 3-6 Deep Learning Algorithms
3 Chapter 4 TABLE 4-1 The Machine Learning Development Life Cycle: Elements and QuestionsTABLE 4-2 Example of Binary Classifier ResultsTABLE 4-3 Example Results CategoriesTABLE 4-4 Build versus Buy Pros and Cons
4 Chapter 6TABLE 6-1 Marketing Content Management Workflow
5 Chapter 13TABLE 13-1 SAE J3016 Level of Driving Automation
1 Chapter 1FIGURE 1-1: Business value versus difficulty in analytics.
2 Chapter 3FIGURE 3-1: Comparison: Total page visits by mean duration of visit.FIGURE 3-2: Composition: Employee per industry (top), revenue per market segmen...FIGURE 3-3: Distribution: Startups per county.FIGURE 3-4: Relationship: Call center wait time versus satisfaction score.FIGURE 3-5: Pyramid of critical success factors for AI and analytics.FIGURE 3-6: Microsoft Excel supports 17 date formats.
3 Chapter 4FIGURE 4-1: Hierarchy of AI competencies.FIGURE 4-2: The Machine Learning Development life cycle.
4 Chapter 7FIGURE 7-1: Using AI for inventory, operations, and the supply chain.
5 Chapter 9FIGURE 9-1: Volume of data growth.
6 Chapter 13FIGURE 13-1: Evolution from reactive maintenance to asset performance optimizat...
7 Chapter 16FIGURE 16-1: The hierarchy of business complexity.
8 Chapter 18FIGURE 18-1: A sample voice of the customer dashboard.
9 Chapter 19FIGURE 19-1: The evolution from maintenance to asset performance optimization f...FIGURE 19-2: APO helps you decide how to avoid predicted failures.FIGURE 19-3: Cost levers driving optimum economic value in operations through p...FIGURE 19-4: Conducting maintenance with AI and IoT sensors reduces the number ...
10 Chapter 20FIGURE 20-1: Differences between popular recommendation methodologies.FIGURE 20-2: The flow of data inputs, outputs, and activities in a recommendati...
11 Chapter 22FIGURE 22-1: The process flow from capture through the application of AI, manag...
12 Chapter 24FIGURE 24-1: A customer support issue handled by a chatbot/virtual assistant.
1 Cover
2 Table of Contents
3 Begin Reading
1 i
2 ii
3 1
4 2
5 3
6 4
7 5
8 7
9 8
10 9
11 10
12 11
13 12
14 13
15 14
16 15
17 16
18 17
19 18
20 19
21 20
22 21
23 22
24 23
25 24
26 25
27 26
28 27
29 29
30 30
31 31
32 32
33 33
34 34
35 35
36 36
37 37
38 38
39 39
40 40
41 41
42 42
43 43
44 44
45 45
46 46
47 47
48 48
49 49
50 50
51 51
52 52
53 53
54 54
55 55
56 56
57 57
58 58
59 59
60 60
61 61
62 63
63 64
64 65
65 66
66 67
67 68
68 69
69 70
70 71
71 72
72 73
73 74
74 75
75 76
76 77
77 78
78 79
79 80
80 81
81 82
82 83
83 84
84 85
85 86
86 87
87 88
88 89
89 90
90 91
91 92
92 93
93 94
94 95
95 96
96 97
97 98
98 99
99 100
100 101
101 102
102 103
103 104
104 105
105 106
106 107
107 108
108 109
109 110
110 111
111 112
112 113
113 114
114 115
115 116
116 117
117 119
118 120
119 121
120 122
121 123
122 124
123 125
124 126
125 127
126 128
127 129
128 130
129 131
130 132
131 133
132 134
133 135
134 136
135 137
136 138
137 139
138 141
139 142
140 143
141 144
142 145
143 146
144 147
145 149
146 150
147 151
148 152
149 153
150 154
151 155
152 156
153 157
154 158
155 159
156 160
157 161
158 162
159 163
160 164
161 165
162 167
163 168
164 169
165 170
166 171
167 173
168 174
169 175
170 176
171 177
172 178
173 179
174 180
175 181
176 182
177 183
178 184
179 185
180 186
181 187
182 188
183 189
184 190
185 191
186 192
187 193
188 194
189 195
190 196
191 197
192 198
193 199
194 200
195 201
196 202
197 203
198 204
199 205
200 207
201 208
202 209
203 210
204 211
205 212
206 213
207 214
208 215
209 217
210 218
211 219
212 220
213 221
214 222
215 223
216 224
217 225
218 226
219 227
220 228
221 229
222 231
223 232
224 233
225 234
226 235
227 236
228 237
229 238
230 239
231 240
232 241
233 242
234 243
235 244
236 245
237 246
238 247
239 248
240 249
241 250
242 251
243 252
244 253
245 254
246 255
247 256
248 257
249 258
250 259
251 260
252 261
253 262
254 263
255 265
256 266
257 267
258 268
259 269
260 270
Читать дальше