Zachary Jarvinen - Enterprise AI For Dummies

Здесь есть возможность читать онлайн «Zachary Jarvinen - Enterprise AI For Dummies» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Enterprise AI For Dummies: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Enterprise AI For Dummies»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Master the application of artificial intelligence in your enterprise with the book series trusted by millions In 
, author Zachary Jarvinen simplifies and explains to readers the complicated world of artificial intelligence for business. Using practical examples, concrete applications, and straightforward prose, the author breaks down the fundamental and advanced topics that form the core of business AI. 
Written for executives, managers, employees, consultants, and students with an interest in the business applications of artificial intelligence, 
 demystifies the sometimes confusing topic of artificial intelligence. No longer will you lag behind your colleagues and friends when discussing the benefits of AI and business. 
The book includes discussions of AI applications, including : 
· Streamlining business operations 
· Improving decision making 
· Increasing automation 
· Maximizing revenue 
The 
 series makes topics understandable, and as such, this book is written in an easily understood style that’s perfect for anyone who seeks an introduction to a usually unforgiving topic.

Enterprise AI For Dummies — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Enterprise AI For Dummies», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Reducing bias

Because AI systems are designed by humans, it is not a surprise that they would have bias in them. It can start at the very beginning when the problem is framed, in data collection, data preparation, or in all three.

As Microsoft’s experiment with Twitter revealed, an algorithm maximizes success as defined by the designers. Solon Barocas, an assistant professor at Cornell University who specializes in fairness in machine learning, pointed out that an issue arises while framing the problem when “those decisions are made for various business reasons other than fairness or discrimination. If the algorithm discovered that giving out subprime loans was an effective way to maximize profit, it would end up engaging in predatory behavior even if that wasn’t the company’s intention.”

Increasingly, social media has become a textbook case of algorithmically-enforced confirmation bias, or emergent bias. Emergent bias isn’t based on the source data, but rather on how the algorithm interacts with the user. For example, if a user likes, favorites, or subscribes to content with a certain viewpoint, such as articles about vaccinations, vegan diets, politics, or even exotic coffee, the algorithm feeds that user more content with the same viewpoint and excludes content from an opposing viewpoint. For example, coffee lovers get more content about the positive effects of coffee consumption and less content about the negative effects of excessive caffeine intake. Over time, the platform magnifies the echo-chamber effect of self-validation, amplifying the person’s inherent bias.

As of this writing, automated and human-in-the-loop tools to address bias, security, compliance, and transparency are appearing in the marketplace.

Enterprise AI For Dummies - изображение 42When determining a specific use case for AI, consider these guidelines:

1 Create a process that guides the development of trustworthy AI aligned with human values.

2 When framing the problem, seek a wide consensus of people to assure that the rewards are neutral and non-discriminatory.

3 Select people with a diverse set of perspectives to build the models.

4 Use diverse and high-quality relevant data.

5 Scrub your sources for bad data or hidden bias, such as race, gender, ideological differences, and the like. For example, a bank might remove gender and race from its loan-processing AI model, but U.S. ZIP codes can often serve as a proxy for race. Their inclusion could still lead to biased predictions that discriminate against historically underprivileged neighborhoods.

6 Rigorously examine the criteria for identifying selection variables.

7 Test machines for sources of bias and evidence of bias, and remedy any problems discovered.

Choosing a Model

Although you might hear the term “artificial intelligence” bandied about as if it were a single thing, the reality is that it is an umbrella term for a vast discipline covering countless models or algorithms of varying complexity and rigor. Even within machine learning, dozens of methods can help you accomplish your goal, each used for a specific type of problem.

Unsupervised learning

This method of ML recognizes patterns in a dataset and infers the structure or identifies correlations between data elements. You use unsupervised learning when you want to discover relationships, such as between account activity and fraud or an attack on the system. Table 3-4lists AI project goals and the appropriate algorithms used for that task.

TABLE 3-4Unsupervised Learning Algorithms

Goal Algorithm
Organize data in clusters or trees, such as evaluating investments according to volatility or return Hierarchical cluster analysis
Recommend a product or service based on the choices of similar customers Recommendation engine
Optimize delivery routes by identifying proximate destinations K-means clustering
Identify risk of heart disease based on heart sounds Gaussian mixture

Supervised learning

You use supervised learning when you want to classify new data based on known relationships in historical data, such as labeling incoming documents or screening job applications. Table 3-5lists AI project goals and the appropriate algorithms used for that task.

TABLE 3-5Supervised Learning Algorithms

Goal Algorithm
Detect fraud in financial transactions Random forest
Forecast for supply chain management Regression
Forecast sales Neural network
Underwrite loans Decision tree

Deep learning

This method of ML requires massive amounts of data, but typically with more accuracy and efficiency than other methods. You use deep learning when you want to solve complex problems such as image classification, natural-language processing, and speech recognition. Table 3-6lists AI project goals and the appropriate algorithms used for that task.

TABLE 3-6Deep Learning Algorithms

Goal Algorithm
Train smarter chatbots, perform language translation Recurrent neural network
Make medical diagnoses using computer vision Convolutional neural network

Reinforcement learning

This method of ML learns a task through trial and error based on preferring actions that are rewarded and avoiding actions that are not. You use reinforcement learning when you need to find the optimum way of interacting with an environment, such as to automate stock trading or to teach a robot to perform a physical task.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Enterprise AI For Dummies»

Представляем Вашему вниманию похожие книги на «Enterprise AI For Dummies» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Enterprise AI For Dummies»

Обсуждение, отзывы о книге «Enterprise AI For Dummies» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x