Siegfried Siegesmund - Monument Future

Здесь есть возможность читать онлайн «Siegfried Siegesmund - Monument Future» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Monument Future: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Monument Future»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Seit der Antike weiß man um das Problem der Verwitterung von Gestein und der damit einhergehenden Verschlechterung des Zustands von Gebäuden, Mauerwerk, Denkmälern, Skulpturen etc.
Alle vier Jahre treffen sich auf einer internationalen Tagung Experten, die sich mit den entsprechenden Sachfragen beschäftigen. Der „14th International Congress on the Deterioration and Conservation of Stone“ findet im September 2020 in Göttingen statt. Er ist die wichtigste Veranstaltung zur Verbreitung des Wissens von Praktikern und Forschern, die im Bereich der Steinkonservierung zur Erhaltung des baulichen Kulturerbes arbeiten: Geowissenschaftler, Architekten, Bauspezialisten, Ingenieure, Restauratoren, Denkmalpfleger und Bauherren.
Der Tagungsband mit über 150 wissenschaftlichen Beiträgen repräsentiert und erfasst den neuesten Stand der Technik auf diesem Gebiet.
Themen sind:
– Charakterisierung von Schadensphänomenen von Steinen und verwandten Baumaterialien (Stuck, Putz, Mörtel usw.)
– Methoden zur Untersuchung des Steinverfalls in situ und zerstörungsfreie Prüfung
– Langzeitüberwachung von Steindenkmälern und Gebäuden
– Simulation und Modellierung des Zerfalls
– Technologien und Entwicklung verbesserter Bearbeitung und Verwendung von Stein in Neubauten
– Bewertung der Langzeitwirkung von Bearbeitungstechniken
– Auswirkungen des Klimawandels auf die Steinverwitterung des Kulturerbes
– Berichte zur Steinkonservierung: Fallstudien und Projekte
– Digitalisierung und Dokumentation von Steinkonservierung

The 14th International Congress on the Deterioration and Conservation of Stone, entitled MONUMENT FUTURE: DECAY AND CONSERVATION OF STONE is a quadrennial event that brings together a world-wide community of geoscientists, architects, building specialists, engineers, conservators, restorators, monument curators and building owners who are concerned about the conservation of cultural stone structures and objects. Since antiquity, the weathering and deterioration of historical buildings, masonry, monuments, sculptures etc. using natural stones has been a very well-known problem.
This conference is the main gathering for the dissemination of knowledge in the field of stone deterioration issues. It represents and captures the state-of-the-art in the field of stone conservation and cultural heritage conservation with regards to the following topics:
– Characterisation of damage phenomena of stone and related building materials (plaster, rendering, mortar etc.)
– Methods for the investigation of stone decay; in-situ and non-destructive testing
– Long-term monitoring of stone monuments and buildings
– Simulation and modelling of decay
– Technology and development of improved treatments and use of stone in new buildings
– Assessment of long-term effects of treatments
– Impact of climate change on stone decay of Cultural Heritage
– Reports about stone conservation: case studies and projects
– Digitalization and documentation in stone conservation

Monument Future — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Monument Future», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 3 Experimental setup of the acoustic emission testing Four specimens - фото 152

Figure 3: Experimental setup of the acoustic emission testing. Four specimens were tested at the same time in a climate chamber.

An AMSY5 AE-system with 10 AE-sensors type VS150MS was used to detect, process and to store the AE-data and to measure the ultrasonic velocity by active pulsing of the sensors. The bandpass filter was set to 25–850 kHz and the evaluation threshold was set to 36 dB AE. For noise filtering the signals detected by the two sensors of each specimen were grouped to events by special time criteria. This type of filter is very effective and as expected, after filtering only a negligible number of events were detected on the reference specimen of stainless steel. In addition, the ultrasonic velocity measured on the reference specimen was constant throughout all tests.

Results and Discussion

The thermal expansion was analysed in two different directions. One according to the preferred c-axis orientation (z) and one perpendicular to z (y).

188In Figure 4, the irreversible length change (residual strain) is given in mm/m after each heating-cooling cycle (20°–90°–20 °C). After three dry cycles (red background) the samples were analysed under wet conditions (blue background). All four marble varieties show residual strain after the first dry cycle, with no or little increases in the following dry cycles. As the residual strain slows down, the adding of water again causes an increase of the residual strain. While the Lasa and Gioia marble shows no significant anisotropy for the residual strain, Großkunzendorfer and Blanco Macael show dependencies according to the analysed sample direction.

Figure 4Residual strain mmm after heating cooling cycles under dry and - фото 153

Figure 4:Residual strain [mm/m], after heating – cooling cycles under dry and wet conditions for a) Lasa, b) Großkunzendorfer, c) Gioia and d) Blanco Macael.

For these four marble varieties, the acoustic emission was analysed. Figure 5 shows the acoustic emission activity, namely events per time, detected during the first two dry cycles and during the first wet cycle on a Blanco Macael marble.

During the first heating a significant AE activity was detected from a temperature of approximatley 35 °C up to the maximum temperature of 90 °C. A significant part of these events with a cumulated energy of 78 × 10 5energy Units (eU) can be related to cracking and crack growth. The onset temperature of the acoustic emission activity of 35 °C indicates that the materials have not been heated up to higher temperatures before. The effect that acoustic emissions do not occur on loadings lower than before was first described by Kaiser 1950 for different mechanically loaded materials. For thermally loaded marbles this so-called Kaiser effect was verified in our own preliminary studies. In the following dwell time, when the thermal equilibrium is reached, the AE activity decreases to nearly 189zero. During the first cooling back to 20 °C, the number of events is comparable to the number of events during the first heating. Also, the cumulated acoustic energy of 56 × 10 5eU has the same order of magnitude like during heating. These events may be related to additional cracking, probably due to crack misfit.

Figure 5Acoustic emission activity the red graph shows the timetemperature - фото 154

Figure 5:Acoustic emission activity, the red graph shows the time-temperature course, while the blue peaks represent the number of events.

In the next cycles a noticeable AE activity was detected during cooling only. The acoustic emission energy in these cycles is significantly lower, nearly zero. This indicates that the main damage occurs during the first heating-cooling cycle. This is verified by the ultrasonic velocity as an indicator for the integrity of the marble (Köhler 1991). For the Blanco Macael marble the ultrasonic velocity measured in the y-direction decreases from 5,530 m/s to 4,450 m/s (Figure 6). In the following dry cycles no significant change of the ultrasonic velocity was detected. These results are in good correlation with the measurements of the thermal strains. No significant further increase of the residual strain was measured after the first cycle under dry conditions.

No AE activity was detected during heating or cooling in the wet cycles. A possible explanation is that no additional cracking occurs, and the water lubricates the grain boundaries and therefore no emissions from friction can be detected. A noticeable number of events was detected only in the dwell time at 90 °C, but the cumulative energy of these events is low. A part of the water evaporated during the dwell time and the upper part of the specimen was exposed to the ambient temperature of 90 °C, whereas the water temperature reached only 80 °C. The source of the events can be localized in the zone of the falling water surface. Therefore, the cause for this AE activity might be thermal or hygric strain in the water surface zone. The ultrasonic velocity of 3,940 m/s measured after drying indicates only a moderate additional degradation of the marble. This contrasts with the significant increase of residual strain in the wet cycles. Accepting that no further cracking occurs, the only possible explanation is an increased residual crack width. As shown in Table 1, the maximum expansions of Blanco Macael in wet cycles are equal or slightly lower than in the dry cycles. Thus, water remains in the pores and keeps them open after cooling. This hypothesis needs to be verified in further studies, e. g. by drying tests and microscopy.

The other tested marbles behave similarly. The highest AE activities and the main loss of ultrasonic velocity were measured during the first heating-cooling cycle.

As shown in Table 2, AE energy and change in ultrasonic velocity are in correlation with the residual strains in the first cycle. The seriate interlobate grain structure of the Grosskunzendorfer in combination with interlocking grain boundaries causes a high AE activity with high energies, indicating the formation of a large number of microcracks.

Figure 6Acoustic emission activity during heating and cooling and ultrasonic - фото 155

Figure 6:Acoustic emission activity during heating and cooling and ultrasonic velocity of Blanco Macael (BM), Gioia (GI), Lasa (LA), and Großkunzendorfer (GK) marble. The wet cycles are marked blue.

190 Table 1:Maximum expansion [mm/m] for each thermal expansion cycle under dry and wet conditions.

1. 2. 3. 4. 5.
GK dry wet 0.71 0.56 0.73 0.62 0.75 0.65 0.67 0.69
BM dry wet 0.31 0.28 0.37 0.36 0.39 0.37 0.39
LA dry wet 0.46 0.46 0.48 0.52 0.49 0.55 0.56 0.57
GI dry wet 0.7 0.99 0.75 1.04 0.76 1.05 1.07 1.09

Table 2:Residual strains, corresponding change of ultrasonic velocity (in the y-direction) and acoustic emission ernergy in the first dry and first wet cycle.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Monument Future»

Представляем Вашему вниманию похожие книги на «Monument Future» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Lloyd Biggle, Jr. - Monument
Lloyd Biggle, Jr.
Siegfried Ahlborn - Im Nebel der Wölfe
Siegfried Ahlborn
Siegfried Bethmann - Malchen uus Schwenge
Siegfried Bethmann
Отзывы о книге «Monument Future»

Обсуждение, отзывы о книге «Monument Future» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.