Siegfried Siegesmund - Monument Future

Здесь есть возможность читать онлайн «Siegfried Siegesmund - Monument Future» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на немецком языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Monument Future: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Monument Future»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Seit der Antike weiß man um das Problem der Verwitterung von Gestein und der damit einhergehenden Verschlechterung des Zustands von Gebäuden, Mauerwerk, Denkmälern, Skulpturen etc.
Alle vier Jahre treffen sich auf einer internationalen Tagung Experten, die sich mit den entsprechenden Sachfragen beschäftigen. Der „14th International Congress on the Deterioration and Conservation of Stone“ findet im September 2020 in Göttingen statt. Er ist die wichtigste Veranstaltung zur Verbreitung des Wissens von Praktikern und Forschern, die im Bereich der Steinkonservierung zur Erhaltung des baulichen Kulturerbes arbeiten: Geowissenschaftler, Architekten, Bauspezialisten, Ingenieure, Restauratoren, Denkmalpfleger und Bauherren.
Der Tagungsband mit über 150 wissenschaftlichen Beiträgen repräsentiert und erfasst den neuesten Stand der Technik auf diesem Gebiet.
Themen sind:
– Charakterisierung von Schadensphänomenen von Steinen und verwandten Baumaterialien (Stuck, Putz, Mörtel usw.)
– Methoden zur Untersuchung des Steinverfalls in situ und zerstörungsfreie Prüfung
– Langzeitüberwachung von Steindenkmälern und Gebäuden
– Simulation und Modellierung des Zerfalls
– Technologien und Entwicklung verbesserter Bearbeitung und Verwendung von Stein in Neubauten
– Bewertung der Langzeitwirkung von Bearbeitungstechniken
– Auswirkungen des Klimawandels auf die Steinverwitterung des Kulturerbes
– Berichte zur Steinkonservierung: Fallstudien und Projekte
– Digitalisierung und Dokumentation von Steinkonservierung

The 14th International Congress on the Deterioration and Conservation of Stone, entitled MONUMENT FUTURE: DECAY AND CONSERVATION OF STONE is a quadrennial event that brings together a world-wide community of geoscientists, architects, building specialists, engineers, conservators, restorators, monument curators and building owners who are concerned about the conservation of cultural stone structures and objects. Since antiquity, the weathering and deterioration of historical buildings, masonry, monuments, sculptures etc. using natural stones has been a very well-known problem.
This conference is the main gathering for the dissemination of knowledge in the field of stone deterioration issues. It represents and captures the state-of-the-art in the field of stone conservation and cultural heritage conservation with regards to the following topics:
– Characterisation of damage phenomena of stone and related building materials (plaster, rendering, mortar etc.)
– Methods for the investigation of stone decay; in-situ and non-destructive testing
– Long-term monitoring of stone monuments and buildings
– Simulation and modelling of decay
– Technology and development of improved treatments and use of stone in new buildings
– Assessment of long-term effects of treatments
– Impact of climate change on stone decay of Cultural Heritage
– Reports about stone conservation: case studies and projects
– Digitalization and documentation in stone conservation

Monument Future — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Monument Future», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The maximum AE amplitude of the granite is at 20 °C and 60 °C, but the frequency is the highest at 70–80 °C. However, in the case of the marble and sandstone, the maximum AE is observed at approximately 20 °C, and its frequency is large. The appearance patterns for these rocks are different, as shown in Figure 2. The AE amplitude is observed when the temperature decreases in the marble and mainly when the temperature increases in the sandstone.

Figure 3 The AE amplitude versus the rock surface temperatures and its - фото 148

Figure 3: The AE amplitude versus the rock surface temperatures and its frequency by temperature. A: granite, B: marble, C: sandstone.

Thermal stress that causes AE is a result of the anisotropy in the thermal expansion properties of different minerals (Sirdesai et al. 2017) and the amount of certain minerals such as quartz. According to Kinoshita et al. (1995), in the case of granitic rock, even when heated at a slow heating rate that does not cause a temperature gradient inside the rock, due to the mismatch in the thermal expansion coefficient of the mineral particles, 183AE signals occur when the temperature reaches from approximately 60 °C to 70 °C, and its amplitude increases with heating. In other words, the reason why the frequency of the AE in the granite increased toward 70–80 °C is probably due to the difference in the thermal expansion coefficient of the constituent minerals. The sandstone is also composed of aggregates of various mineral grains. Although the porosity of the sandstone is high as previously described, the reason that the AE of the sandstone mainly occurred at the time of the temperature increase is thought to be due to the mismatch of the thermal expansion coefficients of the constituent minerals. The main constituent mineral of the sandstone and granite is quartz. Quartz thermally expands more than other minerals: quartz shows a thermal expansion of 0.14 % (⊥ c) and 0.08 % (||c); however, plagioclase shows an expansion of only 0.09 % (||a) and 0.03 % ( ⊥010), from 20 °C to 100 °C, respectively (Skinner 1966). Therefore, AE is generated at a relatively low temperature in rocks containing quartz. In addition, in such rocks, the increase in the AE with a subsequent temperature increase is remarkable.

Because marble is composed of only a single mineral, microcrack occurrence due to inconsistency in the thermal expansion coefficients of the minerals is difficult to recognize. However, calcite shows the thermal anisotropy of 0.189 % ( ⊥c) and −0.042 % (||c) from 20 °C to 100 °C, respectively (Skinner 1966).

AE amplitude and RTC

Figure 4 shows the relationship between the RTC of the rocks and the AE amplitude as well as frequency of the AE for each RTC. In Figure 4, the rate of the temperature increase is shown as a plus, and the rate of the temperature decrease is shown as a minus.

Figure 4 The AE amplitude versus the rate of temperature change RTC of the - фото 149

Figure 4: The AE amplitude versus the rate of temperature change (RTC) of the rock samples and its frequency by RTC. A: granite, B: marble, C: sandstone.

In the case of the granite, the maximum AE amplitude was recorded when the RTC = 1.83 °C/min and the frequency of the RTC = 1.5–2.0 °C/min was approximately 20 %. In the granite, a relatively large AE amplitude is generated as the RTC increases. However, in the marble, the maximum AE amplitude occurred when the temperature decreased. The frequency of the RTC < −1.5 °C/min accounts for approximately 45 % of the whole. In the case of the sandstone, the maximum amplitude is generated at RTC = 1.5 °C/min, though the frequency of the AE during the temperature decrease is high.

Thus, the AE signal occurred when the temperature increased above RTC = 1.5 °C/min in the case of the granite and sandstone and when the temperature decreased below RTC = −1.5 °C/min in the case of the marble.

There have been many field observations of the RTC, but during recent years, it has been reported that large temperature changes have instantaneously occurred. McKay et al. (2009) measured the surface temperature of basalt using thermocouple sheets in the Atacama Desert and the cold deserts 184of Antarctica. It was found that the RTC of ≥ 2 °C/min appeared approximately 8 % on average, and the RTC of ≥ 8 °C/min appeared 0.02 % on average. In addition, Molaro & McKay (2010) measured the surface temperature of basalt and sandstone samples using a 0.375-s interval in Death Valley (USA) during April 2009. As a result, the RTC at 2 °C/min or higher accounted for 71.6 % of the basalt and 66.3 % of the sandstone, respectively.

These studies suggest that rocks subjected to rapid temperature changes due to solar radiation may form microcracks and fracture via thermal shock. In this study, it was presumed that microcracks occurred in the rock samples at an RTC above ±1.5 °C/ min. For this reason, it is believed that long-term continuous temperature change due to radiation, which is effective for microcrack generation, leads to stone deterioration.

Conclusions

AE amplitude was generated in three rock types resulting from a temperature change of from 4 °C to 84 °C, which is probably observed in the field. The generation of AE signals the formation of microcracks due to thermal stress acting on grain boundaries. A large AE amplitude occurs when the temperature gradient is > 1.5 °C/min. This means that microcracks are generated inside the stone even with normal temperature changes in the field. As these microcracks grow, the bond strength between minerals eventually weakens, leading to stone degradation.

The generation, frequency, and pattern of AE differ depending on the rock type. These depend on the mineral composition, structure, and physical and mechanical properties of the rock itself. Granite containing a large amount of quartz has the highest AE generation, followed by that of marble with a uniform mineral composition; the lowest AE generation occurred in high-porosity sandstone.

For cultural properties composed of these three rock types, maintaining a small temperature change will prevent microcrack occurrence, but it is difficult to do so. The expected temperature increase in the future due to global warming is likely to further increase the potential for thermal weathering of cultural properties.

References

Kinoshita N., Abe T., Okuno T. 1995. Thermal expansion behavior of igneous rock at high temperatures and pressures. Doboku Gakkai Ronbunshuu 511: III-30, 69–78.

Matsuoka N., Waragai T., Wakasa S. A. 2017. Physical Rock Weathering: Linking Laboratory Experiments, Field Observations, and Natural Features. J Geography (Chigaku Zasshi) doi: 10.5026/jgeography.126.369.

McKay C. P., Molaro J. L., Marinova M. M. 2009. High-frequency rock temperature data from hyperarid desert environments in the Atacama and the Antarctic Dry Valleys and implications for rock weathering. Geomorph. 110: 182–187.

Molaro J. L., McKay C. P. 2010. Processes controlling rapid temperature variations on rock surfaces. Earth Surf Process Landf 35: 501–507.

Peel R. F. 1974. Insolation weathering: Some measurements of diurnal temperature changes in exposed rocks in the Tibesti region, central Sahara. Z Geomorphologie, Suppl 21: 19–28.

Richter D., Simmons G. 1974. Thermal expansion behavior of igneous rocks. Int J Rock Mech Min Sci Geomech Abstr 1: 403–411.

Sirdesai, N. N. Singh, T. N., Gamage, R. J. 2017. Thermal alterations in the poro-mechanical characteristic of an Indian sandstone – A comparative study. Eng Geol 226: 208–220.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Monument Future»

Представляем Вашему вниманию похожие книги на «Monument Future» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Lloyd Biggle, Jr. - Monument
Lloyd Biggle, Jr.
Siegfried Ahlborn - Im Nebel der Wölfe
Siegfried Ahlborn
Siegfried Bethmann - Malchen uus Schwenge
Siegfried Bethmann
Отзывы о книге «Monument Future»

Обсуждение, отзывы о книге «Monument Future» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.