In this chapter, an easy theoretical method for estimating the tensile stiffness of the unbonded flexible pipe is verified by numerical simulations. Secant modulus is employed in order to carry out the plastic behavior of the material, and this theoretical model is suitable for high loading conditions, which can provide relatively accurate tensile strength for pipeline engineers. The following conclusions could be drawn.
When considering both pressure and tensile armor layers in the pipe’s profile, the external pressure will not have very big impact on its tensile capacity as the radial stiffness of the pressure armor are large enough to resist the radial deformation induced by external pressure.
MSFP is only suitable for shallow water application. Adding a certain profile of pressure armor into MSFP leads to a significant increase in terms of resistance capacity (about eight times). In order to avoid material waste, the profile of the pressure armor could be adjusted according to the water depth, and this can make MSFP exploitable for deeper water depth.
Tangent modulus should be used for next works in order to obtain more accurate results. The contribution of the interlocked carcass should also be taken into account in future works, to verify whether its radial stiffness leads to a remarkable increasing tensile capacity of the pipe.
1. Fergestad, D., Løtveit, S. A., ‘Handbook on Design and Operation of Flexible Pipes’, NTNU, 4Subsea and MARINTEK, 2014.
2. Bai, Liu T, et al . Buckling stability of steel strip reinforced thermoplastic pipe subjected to external pressure[J]. Composite Structures 152(2016)528–537.
3. Bai Y, Liu T, et al . Mechanical behavior of metallic strip flexible pipe subjected to tension[J]. Composite Structures, 170(2017)1–10.
4. Knapp, R. H. (1975, September). Nonlinear analysis of a helically armored cable with nonuniform mechanical properties in tension and torsion. In OCEAN 75 Conference (pp. 155–164). IEEE.
5. Knapp, R. H. “Derivation of a new stiffness matrix for helically armoured cables considering tension and torsion.” International Journal for Numerical Methods in Engineering 14. 4(1979): 515–529.
6. Feret, J. J., and C. L. Bournazel. “Calculation of stresses and slip in structural layers of unbonded flexible pipes.” Journal of Offshore Mechanics and Arctic Engineering 109. 3(1987): 263–269.
7. Ramos, R., Martins, C. A., Pesce, C. P., etc. Some further studies on the axial–torsional behavior of flexible risers[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(1): 1–11.
8. Ramos, R., Kawano, A. Local structural analysis of flexible pipes subjected to traction, torsion and pressure loads[J]. Marine Structures, 2015, 42(1): 95–114.
9. Sævik, S., Bruaseth, S. Theoretical and experimental studies of the axisymmetric behaviour of complex umbilical cross-sections[J]. Applied Ocean Research, 2005, 27(2): 97–106.
10. Sævik, S. Theoretical and experimental studies of stresses in flexible pipes[J]. Computers & Structures, 2011, 89(23): 2273-2291.
11. Sævik, S., Gjøsteen, J. Strength analysis modelling of flexible umbilical members for marine structures[J]. Journal of Applied Mathematics, 2012, 2012(1): 1-18.
12. Dong L, Zhang Q, Huang Y. Energy approaches based axisymmetric analysis of unbonded flexible risers[J]. Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/J Huazhong Univ Sci Technol (Nature Science Edition)2013;41(5).
13. Guo Y, Chen X, Fu S, Wang D. Mechanical Behavior Analysis for Unbonded Umbilical under Axial Loads[J]. Journal of Ship Mechanics, 1007-7294(2017) 06-0739-11.
14. de Sousa, JoséRenato M., et al . “Structural response of a flexible pipe with damaged tensile armor wires under pure tension.” Marine Structures 39(2014): 1–38.
15. Yue, Qianjin, et al . “Tension behavior prediction of flexible pipelines in shallow water.” Ocean Engineering 58(2013): 201–207.
16. Jiang, K., Liu, T., Yuan, S., & Bai, Y. (2018, June). Mechanical Behaviors of Metallic Strip Flexible Pipe Under Axisymmetric Loads. In ASME2018 37th International Conference on Ocean, Offshore and Arctic Engineering (pp. 005T04A010-V005T04A010).
17. American Petroleum Institute, 2002, API recommended Practice 17B, Information Handling Services, API, Washington D. C.
18. Lu, M. W., Luo, X. F., 2001. Basic Elastic Theory, second ed. Bei Jing. (in Chinese).
19. ABAQUS. 2014. User’s and theory manual version.
20. Gay Neto, A., and Martins, C. A., 2010, “Burst Prediction of Flexible Pipes,” Proceedings of the 29th International Conference on Offshore Mechanics and Arctic Engineering, 2010.
21. An C, Duan M, Toledo Filho RD, et al . Collapse of sandwich pipes with PVA fiber reinforced cementitious composites core under external pressure. Ocean Eng 2014;82: 1–13.
22. Kim T S, Kuwamura H. Finite element modeling of bolted connections in thin-walled stainless steel plates under static shear[J]. Thin-Walled Structures, 2007, 45(4): 407–421.
Конец ознакомительного фрагмента.
Текст предоставлен ООО «ЛитРес».
Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.