Bio-Based Epoxy Polymers, Blends, and Composites

Здесь есть возможность читать онлайн «Bio-Based Epoxy Polymers, Blends, and Composites» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Bio-Based Epoxy Polymers, Blends, and Composites: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Bio-Based Epoxy Polymers, Blends, and Composites»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

State-of-the-art overview on bioepoxy polymers as well as their blends and composites – covering all aspects from fundamentals to applications! Bioepoxy polymers is an emerging area and have attracted more and more attention due to their biodegradability and good thermo-mechanical performance. In recent years, research progress has been made in synthesis, processing, characterization, and applications of bioepoxy blends and composites. Bioepoxy polymers are very promising candidates to replace the traditional thermosetting nonbiodegradable polymers.
Bio-Based Epoxy Polymers, Blends and Composites Attracts attention: Bioepoxy polymers are environmentally friendly and considered as a promising candidate to replace the traditional thermosetting nonbiodegradable polymers Highly application-oriented: Bioepoxy polymers can be used in a broad range of applications such as polymer foams, construction, aerospace, automobiles, self-healing systems One-stop reference: Covers all aspects of bioepoxy polymer, their blends and composites, such as synthesis, properties, processing, characterization and applications Broad audience: Attracts attention from both academia and industry

Bio-Based Epoxy Polymers, Blends, and Composites — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Bio-Based Epoxy Polymers, Blends, and Composites», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Starting from diglycidyl ethers of 2‐methoxyhydroquinone and vanillyl alcohol through an epoxy ring opening with ammonia, it is possible to obtain two primary amines, which could be applied as epoxy resin cross‐linking agents. Because of β‐hydroxyl groups present in the molecules of diamines, they exhibit the autocatalytic effect on the epoxy–amine reactions. These new β‐hydroxylamines can be used for cross‐linking of diglycidyl ether of methoxyhydroquinone and diglycidyl ether of vanillyl alcohol giving fully bio‐based epoxy systems with good thermomechanical properties and high thermal stability.

Cardanol derivatives are classified as the phenolic curing agents that are cross‐linked with epoxy groups via the phenolic hydroxyl group. Novolac resins (Nov‐I and Nov‐II), containing an amount of unreacted cardanol of 35 and 20 wt%, respectively, are synthesized by the condensation reaction of cardanol and paraformaldehyde using oxalic acid as a catalyst ( Figure 1.63) [149].

The cardanol‐based novolacs might be used as curing agents of commercial (the diglycidyl ether of bisphenol A) epoxy resin in the presence of 2‐ethyl‐4‐methyl‐imidazole as a catalyst. The higher cross‐linking density is observed with higher amounts of epoxy resin. Moreover, the resin cured with Nov‐II is characterized by higher T gand better mechanical properties than Nov‐I‐resin. On the other hand, because of the higher molecular weight and lower unreacted cardanol content, the similar thermal degradation properties are observed for both tested materials.

Figure 160 Scheme of preparation crosslinked epoxy resin Figure 161 - фото 65

Figure 1.60 Scheme of preparation cross‐linked epoxy resin.

Figure 161 Scheme of epoxy resin by crosslinking LSGLYPA with a mixture of - фото 66

Figure 1.61 Scheme of epoxy resin by cross‐linking LSGLYPA with a mixture of EGDGE/GLYDGE.

Figure 162 Synthesis of dihydroxyaminopropane of 2methoxyhydroquinone a and - фото 67

Figure 1.62 Synthesis of dihydroxyaminopropane of 2‐methoxyhydroquinone (a) and (b) vanillyl alcohol.

Figure 163 Synthesis of the cardanolbased novolacs The interesting - фото 68

Figure 1.63 Synthesis of the cardanol‐based novolacs.

The interesting cross‐linking agent is possible to obtain as the diamine derivative of isosorbide ( Figure 1.64) and it could be used for curing of diglycidyl ether of isosorbide giving the completely bio‐based epoxy system [150].

The diamine derivative of isosorbide is obtained using microwave assistant thiol‐ene coupling reaction in the aqueous media and with the water‐soluble initiator (NH 4) 2S 2O 8, as the alternative to AIBN. The cured isosorbide‐based resin has good shape fixity, good shape recovery, and satisfied thermal stability. This fully bio‐based resin shows great potential to be used as a candidate for shape memory material. Another synthetic method for obtaining the diamine derivative of isosorbide is the reaction of cyanoethylation of isosorbide, followed by the hydrogenation of di‐cyanoethylated product ( Figure 1.65) [151].

Terpene derivatives might also be applied as bio‐based curing agents for epoxy resins. For example, a novel terpene‐based curing agent prepared as an adduct of myrcene, monoterpene containing three double bonds including conjugated diene, and maleic anhydride (MMY) is used to cure bisphenol A‐based epoxy resin [152]. The obtained cured material is characterized by a tensile strength of 48.74 MPa and a storage modulus of 19.06 MPa, but a poor impact property of 8.55 kJ/m 2and a very low elongation at break (7.54%). Improvement of properties of cured bio‐based epoxy resins is performed by application of mixture (mixed by weight ratios of 100/0, 75/25, 50/50, 25/75, and 0/100, respectively) of two curing agents: MMY and castor oil‐modified adduct of myrcene and maleic anhydride (CMMY) ( Figure 1.66).

Figure 164 Synthesis of the isosorbidebased crosslinking agent Figure - фото 69

Figure 1.64 Synthesis of the isosorbide‐based cross‐linking agent.

Figure 165 Synthesis of the isosorbidebased crosslinking agent via - фото 70

Figure 1.65 Synthesis of the isosorbide‐based cross‐linking agent via cyanoethylation step.

Table 1.7 Properties of epoxy resin networks cured with bio‐based curing agents.

Cured samples T g(°C) E at T g+30°C(MPa) Tensile strength (MPa) Elongation at break (%) Impact strength (kJ/m 2)
MMY100 61.59 19.06 48.74 7.5 8.55
MMY75/CMMY25 58.03 19.00 42.11 6.5 13.87
MMY50/CMMY50 54.03 4.18 35.55 6.6 17.29
MMY25/CMMY75 45.09 2.72 11.11 259.4 62.51
CMMY100 15.14 1.11 0.43 565.8 Unbroken

Based on the obtained results ( Table 1.7), with the increase of CMMY weight ratio, the tensile strength and T gof the cross‐linked resin decreases, but the elongation at break and the impact strength increase.

As can be seen from the examples presented above, it is possible to obtain not only epoxy resins from raw materials of natural origin but also cross‐linking agents for them. Interestingly, it is also possible to synthesize completely bio‐derived epoxy systems. Both the epoxy resins based on bisphenol A, as well as cross‐linked with curing agents on the basis of raw materials of natural origin, and the fully epoxy biosystems are characterized by very good final properties.

Figure 166 Synthesis of biobased epoxy curing agent derived from myrcene and - фото 71

Figure 1.66 Synthesis of bio‐based epoxy curing agent derived from myrcene and castor oil.

References

1 1 Derksen, J.T.P., Cuperus, F.P., and Kolser, P. (1996). Prog. Org. Coat. 27 (1–4): 45–53.

2 2 Sharma, V. and Kundu, P.P. (2006). Prog. Polym. Sci. 31 (11): 983–1008.

3 3 Köckritz, A. and Martin, A. (2008). Eur. J. Lipid Sci. Technol. 110: 812–824.

4 4 Hilker, I., Bothe, D., Prüss, J., and Warnecke, H.‐J. (2001). Chem. Eng. Sci. 56: 427–432.

5 5 Chen, J., de Liedekerke Beaufort, M., Gyurik, L. et al. (2019). Green Chem. 21: 2436–2447.

6 6 Sienkiewicz, A.M. and Czub, P. (2016). Ind. Crops Prod. 83: 755–773.

7 7 Chua, S.Ch., Xu, X., and Guo, Z. (2012). Process Biochem. 47: 1439–1451.

8 8 Gan, L.H., Goh, S.H., and Ooi, K.S. (1992). J. Am. Oil Chem. Soc. 69 (4): 347–351.

9 9 Faria‐Machado, A.F., Altenhofen da Silva, M., Vieira, M.G.A., and Beppu, M.M. (2013). J. Appl. Polym. Sci. 127 (5): 3543–3549.

10 10 Walton, H.W. and Nevin, Ch.S. (1965). Reaction of half esters of an alpha, beta‐ethylenically unsaturated‐alpha, beta‐dicarboxylic acid with a vicinal epoxy compound and products thereof. US Patent 3, 190, 899, assigned to A.E. Staley Manufacturing Company, June 22, 1965.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Bio-Based Epoxy Polymers, Blends, and Composites»

Представляем Вашему вниманию похожие книги на «Bio-Based Epoxy Polymers, Blends, and Composites» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Bio-Based Epoxy Polymers, Blends, and Composites»

Обсуждение, отзывы о книге «Bio-Based Epoxy Polymers, Blends, and Composites» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x