Douglas C. Montgomery - Introduction to Linear Regression Analysis

Здесь есть возможность читать онлайн «Douglas C. Montgomery - Introduction to Linear Regression Analysis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Linear Regression Analysis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Linear Regression Analysis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive and current introduction to the fundamentals of regression analysis Introduction to Linear Regression Analysis, 6th Edition The new edition focuses on four key areas of improvement over the fifth edition:
New exercises and data sets New material on generalized regression techniques The inclusion of JMP software in key areas Carefully condensing the text where possible
skillfully blends theory and application in both the conventional and less common uses of regression analysis in today's cutting-edge scientific research. The text equips readers to understand the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences.

Introduction to Linear Regression Analysis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Linear Regression Analysis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Other abuses of regression are discussed in subsequent chapters. For further reading on this subject, see the article by Box [1966].

2.11 REGRESSION THROUGH THE ORIGIN

Some regression situations seem to imply that a straight line passing through the origin should be fit to the data. A no-intercept regression modeloften seems appropriate in analyzing data from chemical and other manufacturing processes. For example, the yield of a chemical process is zero when the process operating temperature is zero.

The no-intercept model is

(2.48) Given n observations yi xi i 1 2 n the leastsquares function - фото 239

Given n observations ( yi , xi ), i = 1, 2, …, n , the least-squares function is

Introduction to Linear Regression Analysis - изображение 240

The only normal equation is

(2.49) Introduction to Linear Regression Analysis - изображение 241

and the least-squares estimator of the slopeis

(2.50) Introduction to Linear Regression Analysis - изображение 242

The estimator of картинка 243is unbiased for β 1, and the fitted regression modelis

(2.51) The estimator of σ 2is 252 with n 1 degrees of freedom Making the - фото 244

The estimator of σ 2is

(2.52) with n 1 degrees of freedom Making the normality assumption on the errors - фото 245

with n − 1 degrees of freedom.

Making the normality assumption on the errors, we may test hypotheses and construct confidence and prediction intervals for the no-intercept model. The 100(1 − α) percent CI on β 1is

(2.53) A 1001 α percent CI on Eyx0 the mean response at x x 0 is 254 - фото 246

A 100(1 − α) percent CI on E(y|x0), the mean response at x = x 0, is

(2.54) The 1001 α percent prediction interval on a future observation at x x0 - фото 247

The 100(1 − α) percent prediction interval on a future observation at x = x0, say y 0, is

(2.55) Both the CI 254and the prediction interval 255widen as x 0increases - фото 248

Both the CI (2.54)and the prediction interval (2.55)widen as x 0increases. Furthermore, the length of the CI (2.54)at x = 0 is zero because the model assumes that the mean y at x = 0 is known with certainty to be zero. This behavior is considerably different than observed in the intercept model. The prediction interval (2.55)has nonzero length at x 0= 0 because the random error in the future observation must be taken into account.

It is relatively easy to misuse the no-intercept model, particularly in situations where the data lie in a region of x space remote from the origin. For example, consider the no-intercept fit in the scatter diagram of chemical process yield ( y ) and operating temperature ( x ) in Figure 2.12 a . Although over the range of the regressor variable 100°F ≤ x ≤ 200°F, yield and temperature seem to be linearly related, forcing the model to go through the origin provides a visibly poor fit. A model containing an intercept, such as illustrated in Figure 2.12 b , provides a much better fit in the region of x space where the data were collected.

Frequently the relationship between y and x is quite different near the origin than it is in the region of x space containing the data. This is illustrated in Figure 2.13for the chemical process data. Here it would seem that either a quadratic or a more complex nonlinear regression model would be required to adequately express the relationship between y and x over the entire range of x . Such a model should only be entertained if the range of x in the data is sufficiently close to the origin.

Figure 212 Scatter diagrams and regression lines for chemical process yield - фото 249

Figure 2.12 Scatter diagrams and regression lines for chemical process yield and operating temperature: ( a ) no-intercept model; ( b ) intercept model.

Figure 213 True relationship between yield and temperature The scatter - фото 250

Figure 2.13 True relationship between yield and temperature.

The scatter diagram sometimes provides guidance in deciding whether or not to fit the no-intercept model. Alternatively we may fit both models and choose between them based on the quality of the fit. If the hypothesis β 0= 0 cannot be rejected in the intercept model, this is an indication that the fit may be improved by using the no-intercept model. The residual mean square is a useful way to compare the quality of fit. The model having the smaller residual mean square is the best fit in the sense that it minimizes the estimate of the variance of y about the regression line.

Generally R 2is not a good comparative statistic for the two models. For the intercept model we have

Note that R 2indicates the proportion of variability around explained by - фото 251

Note that R 2indicates the proportion of variability around explained by regression In the nointercept case the fundamental - фото 252explained by regression. In the no-intercept case the fundamental analysis-of-variance identity (2.32)becomes

Introduction to Linear Regression Analysis - изображение 253

so that the no-intercept model analogue for R 2would be

Introduction to Linear Regression Analysis - изображение 254

The statistic картинка 255indicates the proportion of variability around the origin(zero) accounted for by regression. We occasionally find that картинка 256is larger than R 2even though the residual mean square (which is a reasonable measure of the overall quality of the fit) for the intercept model is smaller than the residual mean square for the no-intercept model. This arises because is computed using uncorrected sums of squares There are alternative ways to - фото 257is computed using uncorrected sums of squares.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Linear Regression Analysis»

Представляем Вашему вниманию похожие книги на «Introduction to Linear Regression Analysis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Linear Regression Analysis»

Обсуждение, отзывы о книге «Introduction to Linear Regression Analysis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x