Douglas C. Montgomery - Introduction to Linear Regression Analysis

Здесь есть возможность читать онлайн «Douglas C. Montgomery - Introduction to Linear Regression Analysis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Linear Regression Analysis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Linear Regression Analysis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive and current introduction to the fundamentals of regression analysis Introduction to Linear Regression Analysis, 6th Edition The new edition focuses on four key areas of improvement over the fifth edition:
New exercises and data sets New material on generalized regression techniques The inclusion of JMP software in key areas Carefully condensing the text where possible
skillfully blends theory and application in both the conventional and less common uses of regression analysis in today's cutting-edge scientific research. The text equips readers to understand the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences.

Introduction to Linear Regression Analysis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Linear Regression Analysis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

That is, the conditional distribution of y given x is normal with conditional mean

(2.63) Introduction to Linear Regression Analysis - изображение 296

and conditional variance картинка 297. Note that the mean of the conditional distribution of y given x is a straight-line regression model. Furthermore, there is a relationship between the correlation coefficient ρ and the slope β 1. From Eq. (2.62b) we see that if ρ = 0, then β 1= 0, which implies that there is no linear regression of y on x . That is, knowledge of x does not assist us in predicting y .

The method of maximum likelihood may be used to estimate the parameters β 0and β 1. It may be shown that the maximum-likelihood estimators of these parameters are

(2.64a) Introduction to Linear Regression Analysis - изображение 298

and

(2.64b) The estimators of the intercept and slope in Eq 264are identical to those - фото 299

The estimators of the intercept and slope in Eq. (2.64)are identical to those given by the method of least squares in the case where x was assumed to be a controllable variable. In general, the regression model with y and x jointly normally distributed may be analyzed by the methods presented previously for the model where x is a controllable variable. This follows because the random variable y given x is independently and normally distributed with mean β 0+ β 1 x and constant variance картинка 300. As noted in Section 2.12.1, these results will also hold for anyjoint distribution of y and x such that the conditional distribution of y given x is normal.

It is possible to draw inferences about the correlation coefficient ρ in this model. The estimator of ρ is the sample correlation coefficient

(2.65) Introduction to Linear Regression Analysis - изображение 301

Note that

(2.66) Introduction to Linear Regression Analysis - изображение 302

so that the slope картинка 303is just the sample correlation coefficient r multiplied by a scale factor that is the square root of the spread of the y ’s divided by the spread of the x ’s. Thus, картинка 304and r are closely related, although they provide somewhat different information. The sample correlation coefficient r is a measure of the linear associationbetween y and x, while картинка 305measures the change in the mean of y for a unit change in x . In the case of a controllable variable x, r has no meaning because the magnitude of r depends on the choice of spacing for x . We may also write, from Eq. (2.66),

which we recognize from Eq 247as the coefficient of determination That is - фото 306

which we recognize from Eq. (2.47)as the coefficient of determination. That is, the coefficient of determination R 2is just the square of the correlation coefficient between y and x .

While regression and correlation are closely related, regression is a more powerful tool in many situations. Correlation is only a measure of association and is of little use in prediction. However, regression methods are useful in developing quantitative relationships between variables, which can be used in prediction.

It is often useful to test the hypothesis that the correlation coefficient equals zero, that is,

(2.67) Introduction to Linear Regression Analysis - изображение 307

The appropriate test statistic for this hypothesis is

(2.68) Introduction to Linear Regression Analysis - изображение 308

which follows the t distribution with n − 2 degrees of freedom if H 0: ρ = 0 is true. Therefore, we would reject the null hypothesis if | t 0| > t α/2, n−2. This test is equivalent to the t test for H 0: β 1= 0 given in Section 2.3. This equivalence follows directly from Eq. (2.66).

The test procedure for the hypotheses

(2.69) Introduction to Linear Regression Analysis - изображение 309

where ρ 0≠ 0 is somewhat more complicated. For moderately large samples (e.g., n ≥ 25) the statistic

(2.70) is approximately normally distributed with mean and variance - фото 310

is approximately normally distributed with mean

Introduction to Linear Regression Analysis - изображение 311

and variance

Introduction to Linear Regression Analysis - изображение 312

Therefore, to test the hypothesis H 0: ρ = ρ 0, we may compute the statistic

(2.71) and reject H 0 ρ ρ 0if Z 0 Z α2 It is also possible to construct a - фото 313

and reject H 0: ρ = ρ 0if | Z 0| > Z α/2.

It is also possible to construct a 100(1 − α ) percent CI for ρ using the transformation (2.70). The 100(1 − α ) percent CI is

(2.72) where tanh u eu e u eu e u Example 29 The Delivery Time Data - фото 314

where tanh u = ( eue −u)/( eu + e −u).

Example 2.9 The Delivery Time Data

Consider the soft drink delivery time data introduced in Chapter 1. The 25 observations on delivery time y and delivery volume x are listed in Table 2.11. The scatter diagram shown in Figure 1.1indicates a strong linear relationship between delivery time and delivery volume. The Minitab output for the simple linear regression model is in Table 2.12.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Linear Regression Analysis»

Представляем Вашему вниманию похожие книги на «Introduction to Linear Regression Analysis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Linear Regression Analysis»

Обсуждение, отзывы о книге «Introduction to Linear Regression Analysis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x