Douglas C. Montgomery - Introduction to Linear Regression Analysis

Здесь есть возможность читать онлайн «Douglas C. Montgomery - Introduction to Linear Regression Analysis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to Linear Regression Analysis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to Linear Regression Analysis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A comprehensive and current introduction to the fundamentals of regression analysis Introduction to Linear Regression Analysis, 6th Edition The new edition focuses on four key areas of improvement over the fifth edition:
New exercises and data sets New material on generalized regression techniques The inclusion of JMP software in key areas Carefully condensing the text where possible
skillfully blends theory and application in both the conventional and less common uses of regression analysis in today's cutting-edge scientific research. The text equips readers to understand the basic principles needed to apply regression model-building techniques in various fields of study, including engineering, management, and the health sciences.

Introduction to Linear Regression Analysis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to Linear Regression Analysis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

(2.2a) Introduction to Linear Regression Analysis - изображение 41

and the variance is

(2.2b) Thus the mean of y is a linear function of x although the variance of y does - фото 42

Thus, the mean of y is a linear function of x although the variance of y does not depend on the value of x . Furthermore, because the errors are uncorrelated, the responses are also uncorrelated.

The parameters β 0and β 1are usually called regression coefficients. These coefficients have a simple and often useful interpretation. The slope β 1is the change in the mean of the distribution of y produced by a unit change in x . If the range of data on x includes x = 0, then the intercept β 0is the mean of the distribution of the response y when x = 0. If the range of x does not include zero, then β 0has no practical interpretation.

2.2 LEAST-SQUARES ESTIMATION OF THE PARAMETERS

The parameters β 0and β 1are unknown and must be estimated using sample data. Suppose that we have n pairs of data, say ( y 1, x 1), ( y 2, x 2), …, ( yn , xn ). As noted in Chapter 1, these data may result either from a controlled experiment designed specifically to collect the data, from an observational study, or from existing historical records (a retrospective study).

2.2.1 Estimation of β 0and β 1

The method of least squaresis used to estimate β 0and β 1. That is, we estimate β 0and β 1so that the sum of the squares of the differences between the observations yi and the straight line is a minimum. From Eq. (2.1)we may write

(2.3) Equation 21maybe viewed as a population regression modelwhile Eq 23is a - фото 43

Equation (2.1)maybe viewed as a population regression modelwhile Eq. (2.3)is a sample regression model, written in terms of the n pairs of data ( yi , xi ) ( i = 1, 2, …, n ). Thus, the least-squares criterion is

(2.4) The leastsquares estimators of β 0and β 1 say and - фото 44

The least-squares estimators of β 0and β 1, say and must satisfy and - фото 45and must satisfy and Simplifying these two equations yields - фото 46, must satisfy

and Simplifying these two equations yields 25 - фото 47

and

Simplifying these two equations yields 25 Equations 25are called the - фото 48

Simplifying these two equations yields

(2.5) Introduction to Linear Regression Analysis - изображение 49

Equations (2.5)are called the least-squares normal equations. The solution to the normal equations is

(2.6) Introduction to Linear Regression Analysis - изображение 50

and

(2.7) where are the averages of yi and xi respectively Therefore - фото 51

where

are the averages of yi and xi respectively Therefore and - фото 52

are the averages of yi and xi , respectively. Therefore, картинка 53and Introduction to Linear Regression Analysis - изображение 54in Eqs. (2.6)and (2.7)are the least-squares estimatorsof the intercept and slope, respectively. The fitted simple linear regression model is then

(2.8) Introduction to Linear Regression Analysis - изображение 55

Equation (2.8)gives a point estimate of the mean of y for a particular x .

Since the denominator of Eq. (2.7)is the corrected sum of squares of the xi and the numerator is the corrected sum of cross products of xi and yi , we may write these quantities in a more compact notation as

(2.9) and 210 Thus a convenient way to write Eq 27is 211 - фото 56

and

(2.10) Thus a convenient way to write Eq 27is 211 The difference between the - фото 57

Thus, a convenient way to write Eq. (2.7)is

(2.11) картинка 58

The difference between the observed value yi and the corresponding fitted value is a residual Mathematically the i th residual is 212 Residuals play an - фото 59is a residual. Mathematically the i th residual is

(2.12) Residuals play an important role in investigating model adequacyand in - фото 60

Residuals play an important role in investigating model adequacyand in detecting departures from the underlying assumptions. This topic is discussed in subsequent chapters.

Example 2.1The Rocket Propellant Data

A rocket motor is manufactured by bonding an igniter propellant and a sustainer propellant together inside a metal housing. The shear strength of the bond between the two types of propellant is an important quality characteristic. It is suspected that shear strength is related to the age in weeks of the batch of sustainer propellant. Twenty observations on shear strength and the age of the corresponding batch of propellant have been collected and are shown in Table 2.1. The scatter diagram, shown in Figure 2.1, suggests that there is a strong statistical relationship between shear strength and propellant age, and the tentative assumption of the straight-line model y = β 0+ β 1 x + ε appears to be reasonable.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to Linear Regression Analysis»

Представляем Вашему вниманию похожие книги на «Introduction to Linear Regression Analysis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to Linear Regression Analysis»

Обсуждение, отзывы о книге «Introduction to Linear Regression Analysis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x