64 64. Ahmadyar, A.S. and Verbic, G. (2017). Coordinated operation strategy of wind farms for frequency control by exploring wake interaction. IEEE Transactions on Sustainable Energy 8 (1): 230–238.
65 65. Izadkhast, S., Garcia‐Gonzalez, P., Frias, P., and Bauer, P. (2017). Design of plug‐in electric vehicle's frequency‐droop controller for primary frequency control and performance assessment. IEEE Transactions on Power Systems 32 (6): 4241–4254.
66 66. Hwang, M., Muljadi, E., Jang, G., and Kang, Y.C. (2017). Disturbance‐adaptive short‐term frequency support of a DFIG associated with the variable gain based on the ROCOF and rotor speed. IEEE Transactions on Power Systems 32 (3): 1873–1881.
67 67. Attya, A.B.T. and Dominguez‐Garcia, J.L. (2018). Insights on the provision of frequency support by wind power and the impact on energy systems. IEEE Transactions on Sustainable Energy 9 (2): 719–728.
68 68. Tielens, P. and Van Hertem, D. (2017). Receding horizon control of wind power to provide frequency regulation. IEEE Transactions on Power Systems 32 (4): 2663–2672.
69 69. Garmroodi, M., Verbic, G., and Hill, D.J. (2018). Frequency support from wind turbine generators with a time‐variable droop characteristic. IEEE Transactions on Sustainable Energy 9 (2): 676–684.
70 70. Khooban, M., Dragicevic, T., Blaabjerg, F., and Delimar, M. (2018). Shipboard microgrids: a novel approach to load frequency control. IEEE Transactions on Sustainable Energy 9 (2): 843–852.
71 71. Benysek, G., Bojarski, J., Smolenski, R. et al. (2018). Application of stochastic decentralized active demand response (DADR) system for load frequency control. IEEE Transactions on Smart Grid 9 (2): 1055–1062.
72 72. Vrettos, E., Ziras, C., and Andersson, G. (2017). Fast and reliable primary frequency reserves from refrigerators with decentralized stochastic control. IEEE Transactions on Power Systems 32 (4): 2924–2941.
73 73. Short, J.A., Infield, D.G., and Freris, L.L. (2007). Stabilization of grid frequency through dynamic demand control. IEEE Transactions on Power Systems 22 (3): 1284–1293.
74 74. Molina‐Garcia, A., Bouffard, F., and Kirschen, D.S. (2011). Decentralized demand‐side contribution to primary frequency control. IEEE Transactions on Power Systems 26 (1): 411–419.
75 75. Zhao, H., Wu, Q., Huang, S. et al. (2018). Hierarchical control of thermostatically controlled loads for primary frequency support. IEEE Transactions on Smart Grid 9 (4): 2986–2998.
76 76. Yao, E., Wong, V.W.S., and Schober, R. (2017). Robust frequency regulation capacity scheduling algorithm for electric vehicles. IEEE Transactions on Smart Grid 8 (2): 984–997.
77 77. Ferraro, P., Crisostomi, E., Raugi, M., and Milano, F. (2017). Analysis of the impact of microgrid penetration on power system dynamics. IEEE Transactions on Power Systems 32 (5): 4101–4109.
78 78. Ferraro, P., Crisostomi, E., Shorten, R., and Milano, F. (2018). Stochastic frequency control of grid connected microgrids. IEEE Transactions on Power Systems 33 (5): 5704–5713.
79 79. Larsen, E. and Sener, F. (1996). Facts Applications. Catalogue No. 96TP116‐0.
80 80. IEEE (1990). Voltage Stability of Power Systems: Concepts, Analytical Tools and Industry Experience. IEEE Technical Report 90YH0358‐2‐PWR. IEEE/PES.
81 81. Balu, C. and Maratukulam, D. (1994). Power System Voltage Stability. McGraw‐Hill.
82 82. Van Cutsem, T. and Vournas, C. (2007). Voltage Stability of Electric Power Systems. Springer Science & Business Media.
83 83. Kamwa, I., Grondin, R., and Hebert, Y. (2001). Wide‐area measurement based stabilizing control of large power systems – a decentralized/hierarchical approach. IEEE Transactions on Power Systems 16 (1): 136–153.
84 84. Taylor, C.W., Erickson, D.C., Martin, K.E. et al. (2005). WACS wide‐area stability and voltage control system: R & D and online demonstration. Proceedings of the IEEE 93 (5): 892–906.
85 85. Andersson, G., Bel, C.A., and Canizares, C. (2009). Frequency and voltage control. In: Electric Energy Systems: Analysis and Operation. CRC Press.
86 86. Ilic, M.D., Liu, X., Leung, G. et al. (1995). Improved secondary and new tertiary voltage control. IEEE Transactions on Power Systems 10 (4): 1851–1862.
87 87. Corsi, S., Pozzi, M., Sabelli, C., and Serrani, A. (2004). The coordinated automatic voltage control of the Italian transmission grid‐Part I: reasons of the choice and overview of the consolidated hierarchical system. IEEE Transactions on Power Systems 19 (4): 1723–1732.
88 88. Corsi, S., Pozzi, M., Sforna, M., and Dell'Olio, G. (2004). The coordinated automatic voltage control of the italian transmission grid‐Part II: control apparatuses and field performance of the consolidated hierarchical system. IEEE Transactions on Power Systems 19 (4): 1733–1741.
89 89. Guo, Q., Sun, H., Zhang, M. et al. (2013). Optimal voltage control of PJM smart transmission grid: study, implementation, and evaluation. IEEE Transactions on Smart Grid 4 (3): 1665–1674.
90 90. Xiao, W., Torchyan, K., El Moursi, M.S., and Kirtley, J.L. (2014). Online supervisory voltage control for grid interface of utility‐level PV plants. IEEE Transactions on Sustainable Energy 5 (3): 843–853.
91 91. A. Awadhi, N. and Moursi, M.S.E. (2017). A novel centralized PV power plant controller for reducing the voltage unbalance factor at transmission level interconnection. IEEE Transactions on Energy Conversion 32 (1): 233–243. https://doi.org/10.1109/TEC.2016.2620477.
92 92. Glavic, M. and Van Cutsem, T. (2011). A short survey of methods for voltage instability detection. 2011 IEEE Power and Energy Society General Meeting, Detroit, MI (2011), pp. 1–8, doi: https://doi.org/10.1109/PES.2011.6039311.
93 93. Robbins, B.A., Hadjicostis, C.N., and Dominguez‐Garcia, A.D. (2013). A two‐stage distributed architecture for voltage control in power distribution systems. IEEE Transactions on Power Systems 28 (2): 1470–1482.
94 94. Zeraati, M., Hamedani Golshan, M.E., and Guerrero, J.M. (2019). A consensus‐based cooperative control of PEV battery and PV active power curtailment for voltage regulation in distribution networks. IEEE Transactions on Smart Grid 10 (1): 670–680.
95 95. Li, Z., Guo, Q., Sun, H. et al. (2018). A distributed transmission‐distribution coupled static voltage stability assessment method considering distributed generation. IEEE Transactions on Power Systems 33 (3): 2621–2632.
96 96. Popovic, D.H., Hill, D.J., and Wu, Q. (2002). Optimal voltage security control of power systems. International Journal of Electrical Power & Energy Systems 24 (4): 305–320.
97 97. Larsson, M. and Karlsson, D. (2003). Coordinated system protection scheme against voltage collapse using heuristic search and predictive control. IEEE Transactions on Power Systems 18 (3): 1001–1006.
98 98. Ma, H. and Hill, D.J. (2018). A fast local search scheme for adaptive coordinated voltage control. IEEE Transactions on Power Systems 33 (3): 2321–2330.
99 99. Ghahremani, E. and Kamwa, I. (2016). Local and wide‐area PMU‐based decentralized dynamic state estimation in multi‐machine power systems. IEEE Transactions on Power Systems 31 (1): 547–562.
100 100. Raoufat, M.E., Tomsovic, K., and Djouadi, S.M. (2016). Virtual actuators for wide‐area damping control of power systems. IEEE Transactions on Power Systems 31 (6): 4703–4711.
101 101. Mohagheghi, S., Venayagamoorthy, G.K., and Harley, R.G. (2007). Optimal wide area controller and state predictor for a power system. IEEE Transactions on Power Systems 22 (2): 693–705.
102 102. Mithulananthan, N., Canizares, C.A., Reeve, J., and Rogers, G.J. (2003). Comparison of PSS, SVC, and STATCOM controllers for damping power system oscillations. IEEE Transactions on Power Systems 18 (2): 786–792.
Читать дальше