Hassan Bevrani - Renewable Integrated Power System Stability and Control

Здесь есть возможность читать онлайн «Hassan Bevrani - Renewable Integrated Power System Stability and Control» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Renewable Integrated Power System Stability and Control: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Renewable Integrated Power System Stability and Control»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover new challenges and hot topics in the field of penetrated power grids in this brand-new interdisciplinary resource  Renewable Integrated Power System Stability and Control In addition to the basic principles of penetrated power system modeling, model reduction, and model derivation, the book discusses inertia challenge requirements and control levels, as well as recent advances in visualization of virtual synchronous generators and their associated effects on system performance. The physical constraints and engineering considerations of advanced control schemes are deliberated at length. 
Renewable Integrated Power System Stability and Control A thorough introduction to power systems, including time horizon studies, structure, power generation options, energy storage systems, and microgrids An exploration of renewable integrated power grid modeling, including basic principles, host grid modeling, and grid-connected MG equivalent models A study of virtual inertia, including grid stability enhancement, simulations, and experimental results A discussion of renewable integrated power grid stability and control, including small signal stability assessment and the frequency point of view Perfect for engineers and operators in power grids, as well as academics studying the technology, 
 will also earn a place in the libraries of students in Electrical Engineering programs at the undergraduate and postgraduate levels who wish to improve their understanding of power system operation and control.

Renewable Integrated Power System Stability and Control — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Renewable Integrated Power System Stability and Control», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

24 24. Concordia, C. and Kirchmayer, L. (1953). Tie‐line power and frequency control of electric power systems [includes discussion]. Transactions of the American Institute of Electrical Engineers. Part III: Power Apparatus and Systems 72 (3): 562–572.

25 25. System Controls Subcommittee of the Power System Engineering Committee of the IEEE Power Group (1970). IEEE standard definitions of terms for automatic generation control on electric power systems. IEEE Transactions on Power Apparatus and Systems PAS‐89 (6): 1356–1364.

26 26. I. C. Report (1973). Dynamic models for steam and hydro turbines in power system studies. IEEE Transactions on Power Apparatus and Systems PAS‐92 (6): 1904–1915.

27 27. Jaleeli, N., VanSlyck, L.S., Ewart, D.N. et al. (1992). Understanding automatic generation control. IEEE Transactions on Power Systems 7 (3): 1106–1122.

28 28. Pathak, N., Bhatti, T.S., and Verma, A. (2017). Accurate modelling of discrete AGC controllers for interconnected power systems. IET Generation, Transmission & Distribution 11 (8): 2102–2114.

29 29. Moawwad, A., El‐Saadany, E.F., and El Moursi, M.S. (2018). Dynamic security‐constrained automatic generation control (AGC) of integrated ac/dc power networks. IEEE Transactions on Power Systems 33 (4): 3875–3885.

30 30. Ledva, G.S., Vrettos, E., Mastellone, S. et al. (2018). Managing communication delays and model error in demand response for frequency regulation. IEEE Transactions on Power Systems 33 (2): 1299–1308.

31 31. Ibraheem, P., Kumar, and Kothari, D.P. (2005). Recent philosophies of automatic generation control strategies in power systems. IEEE Transactions on Power Systems 20 (1): 346–357.

32 32. Bevrani, H. (2014). Robust Power System Frequency Control, 2e. Gewerbestrasse, Switzerland: Springer.

33 33. Ulbig, A., Borsche, T.S., and Andersson, G. (2014). Impact of low rotational inertia on power system stability and operation. IFAC Proceedings Volumes 47 (3): 7290–7297.

34 34. Jaleeli, N. and VanSlyck, L.S. (1999). NERC's new control performance standards. IEEE Transactions on Power Systems 14 (3): 1092–1099.

35 35. Hain, Y., Kulessky, R., and Nudelman, G. (2000). Identification‐based power unit model for load‐frequency control purposes. IEEE Transactions on Power Systems 15 (4): 1313–1321.

36 36. Chang‐Chien, L.R., Hoonchareon, N.‐B., Ong, C.‐M., and Kramer, R.A. (2003). Estimation of /spl beta/ for adaptive frequency bias setting in load frequency control. IEEE Transactions on Power Systems 18 (2): 904–911.

37 37. Wilches‐Bernal, F., Concepcion, R., Neely, J.C. et al. (2018). Communication enabled fast acting imbalance reserve (CE‐FAIR). IEEE Transactions on Power Systems 33 (1): 1101–1103.

38 38. Zhang, G. and McCalley, J.D. (2018). Estimation of regulation reserve requirement based on control performance standard. IEEE Transactions on Power Systems 33 (2): 1173–1183.

39 39. Polajzer, B., Brezovnik, R., and Ritonja, J. (2017). Evaluation of load frequency control performance based on standard deviational ellipses. IEEE Transactions on Power Systems 32 (3): 2296–2304.

40 40. Avila, T., Gutierrez, E., and Chavez, H. (2017). Performance standard‐compliant secondary control: the case of Chile. IEEE Latin America Transactions 15 (7): 1257–1262.

41 41. Douglas, L.D., Green, T.A., and Kramer, R.A. (1994). New approaches to the AGC nonconforming load problem. IEEE Transactions on Power Systems 9 (2): 619–628. https://doi.org/10.1109/59.317682.

42 42. Trovato, V., Sanz, I.M., Chaudhuri, B., and Strbac, G. (2017). Advanced control of thermostatic loads for rapid frequency response in Great Britain. IEEE Transactions on Power Systems 32 (3): 2106–2117.

43 43. Delavari, A. and Kamwa, I. (2018). Improved optimal decentralized load modulation for power system primary frequency regulation. IEEE Transactions on Power Systems 33 (1): 1013–1025.

44 44. Pan, C. and Liaw, C. (1989). An adaptive controller for power system load‐frequency control. IEEE Transactions on Power Systems 4 (1): 122–128.

45 45. Vajk, I., Vajta, M., Keviczky, L. et al. (1985). Adaptive load‐frequency control of the Hungarian power system. Automatica 21 (2): 129–137.

46 46. Wang, W., Li, Y., Cao, Y. et al. (2018). Adaptive droop control of VSC‐MTDC system for frequency support and power sharing. IEEE Transactions on Power Systems 33 (2): 1264–1274.

47 47. Prostejovsky, A.M., Marinelli, M., Rezkalla, M. et al. (2018). Tuningless load frequency control through active engagement of distributed resources. IEEE Transactions on Power Systems 33 (3): 2929–2939.

48 48. Stankovic, A.M., Tadmor, G., and Sakharuk, T.A. (1998). On robust control analysis and design for load frequency regulation. IEEE Transactions on Power Systems 13 (2): 449–455.

49 49. Rerkpreedapong, D., Hasanovic, A., and Feliachi, A. (2003). Robust load frequency control using genetic algorithms and linear matrix inequalities. IEEE Transactions on Power Systems 18 (2): 855–861.

50 50. Ojaghi, P. and Rahmani, M. (2017). LMI‐based robust predictive load frequency control for power systems with communication delays. IEEE Transactions on Power Systems 32 (5): 4091–4100.

51 51. Zhang, C., Jiang, L., Wu, Q.H. et al. (2013). Delay‐dependent robust load frequency control for time delay power systems. IEEE Transactions on Power Systems 28 (3): 2192–2201.

52 52. Zhao, J., Mili, L., and Milano, F. (2018). Robust frequency divider for power system online monitoring and control. IEEE Transactions on Power Systems 33 (4): 4414–4423.

53 53. Aliabadi, S.F., Taher, S.A., and Shahidehpour, M. (2018). Smart deregulated grid frequency control in presence of renewable energy resources by EVs charging control. IEEE Transactions on Smart Grid 9 (2): 1073–1085.

54 54. Wang, D., Liang, L., Hu, J. et al. (2018). Analysis of low‐frequency stability in grid tied DFIGs by non‐minimum phase zero identification. IEEE Transactions on Energy Conversion 33 (2): 716–729.

55 55. Liu, Y., Jiang, L., Wu, Q.H., and Zhou, X. (2017). Frequency control of DFIG‐based wind power penetrated power systems using switching angle controller and AGC. IEEE Transactions on Power Systems 32 (2): 1553–1567.

56 56. Pradhan, C. and Bhende, C.N. (2017). Frequency sensitivity analysis of load damping coefficient in wind farm‐integrated power system. IEEE Transactions on Power Systems 32 (2): 1016–1029.

57 57. Golpira, H., Seifi, H., Messina, A.R., and Haghifam, M. (2016). Maximum penetration level of microgrids in large‐scale power systems: frequency stability viewpoint. IEEE Transactions on Power Systems 31 (6): 5163–5171.

58 58. Leon, A.E. (2018). Short‐term frequency regulation and inertia emulation using an MMC‐based MTDC system. IEEE Transactions on Power Systems 33 (3): 2854–2863.

59 59. Rakhshani, E., Remon, D., Cantarellas, A.M. et al. (2017). Virtual synchronous power strategy for multiple HVDC interconnections of multi‐area AGC power systems. IEEE Transactions on Power Systems 32 (3): 1665–1677.

60 60. Li, D., Zhu, Q., Lin, S., and Bian, X.Y. (2017). A self‐adaptive inertia and damping combination control of VSG to support frequency stability. IEEE Transactions on Energy Conversion 32 (1): 397–398.

61 61. Wu, Y., Yang, W., Hu, Y., and Dzung, P.Q. (2019). Frequency regulation at a wind farm using time varying inertia and droop controls. IEEE Transactions on Industry Applications 55 (1): 213–224.

62 62. Fang, J., Li, H., Tang, Y., and Blaabjerg, F. (2018). Distributed power system virtual inertia implemented by grid‐connected power converters. IEEE Transactions on Power Electronics 33 (10): 8488–8499.

63 63. Li, Y., Xu, Z., Ostergaard, J., and Hill, D.J. (2017). Coordinated control strategies for offshore wind farm integration via VSC‐HVDC for system frequency support. IEEE Transactions on Energy Conversion 32 (3): 843–856.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Renewable Integrated Power System Stability and Control»

Представляем Вашему вниманию похожие книги на «Renewable Integrated Power System Stability and Control» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Renewable Integrated Power System Stability and Control»

Обсуждение, отзывы о книге «Renewable Integrated Power System Stability and Control» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x