Jakob J. Zyl - Introduction to the Physics and Techniques of Remote Sensing

Здесь есть возможность читать онлайн «Jakob J. Zyl - Introduction to the Physics and Techniques of Remote Sensing» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Introduction to the Physics and Techniques of Remote Sensing: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Introduction to the Physics and Techniques of Remote Sensing»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover cutting edge theory and applications of modern remote sensing in geology, oceanography, atmospheric science, ionospheric studies, and more  The thoroughly revised third edition of the 
delivers a comprehensive update to the authoritative textbook, offering readers new sections on radar interferometry, radar stereo, and planetary radar. It explores new techniques in imaging spectroscopy and large optics used in Earth orbiting, planetary, and astrophysics missions. It also describes remote sensing instruments on, as well as data acquired with, the most recent Earth and space missions. 
Readers will benefit from the brand new and up-to-date concept examples and full-color photography, 50% of which is new to the series. You’ll learn about the basic physics of wave/matter interactions, techniques of remote sensing across the electromagnetic spectrum (from ultraviolet to microwave), and the concepts behind the remote sensing techniques used today and those planned for the future. 
The book also discusses the applications of remote sensing for a wide variety of earth and planetary atmosphere and surface sciences, like geology, oceanography, resource observation, atmospheric sciences, and ionospheric studies. This new edition also incorporates: 
A fulsome introduction to the nature and properties of electromagnetic waves An exploration of sensing solid surfaces in the visible and near infrared spectrums, as well as thermal infrared, microwave, and radio frequencies A treatment of ocean surface sensing, including ocean surface imaging and the mapping of ocean topography A discussion of the basic principles of atmospheric sensing and radiative transfer, including the radiative transfer equation Perfect for senior undergraduate and graduate students in the field of remote sensing instrument development, data analysis, and data utilization, 
 will also earn a place in the libraries of students, faculty, researchers, engineers, and practitioners in fields like aerospace, electrical engineering, and astronomy.

Introduction to the Physics and Techniques of Remote Sensing — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Introduction to the Physics and Techniques of Remote Sensing», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

At radio frequencies below 10 MHz, the Earth’s ionosphere blocks any transmission to or from the surface. In the rest of the radio frequency region, up to the low microwave (10 GHz), the atmosphere is effectively transparent. In the rest of the microwave region, there are a number of strong absorption bands, mainly associated with water vapor and oxygen.

In the submillimeter and far‐infrared region, the atmosphere is almost completely opaque, and the surface is invisible. This opacity is due mainly to the presence of absorption spectral bands associated with the atmospheric constituents. This makes the spectral region most appropriate for atmospheric remote sensing.

The opacity of the atmosphere in the visible and near infrared is high in selected bands where the high absorption coefficients are due to a variety of electronic and vibrational processes mainly related to the water vapor and carbon dioxide molecules. In the ultraviolet, the opacity is mainly due to the ozone layer in the upper atmosphere.

The presence of clouds leads to additional opacity due to absorption and scattering by cloud drops. This limits the observation capabilities in the visible, infrared, and submillimeter regions. In the microwave and radio frequency regions, clouds are basically transparent.

In the case of the other planets, more extreme conditions are encountered. In the case of Mercury, the Moon, asteroids, comets, and Pluto, no significant atmosphere exists, and the whole electromagnetic spectrum can be used for surface observation. In the case of Venus and Titan, the continuous and complete cloud, or haze, coverage limits surface observation to the longer wavelength regions, particularly radio frequency and microwave bands. In the case of Mars, the tenuous atmosphere is essentially transparent across the spectrum even though a number of absorption bands are present. In the case of the giant planets, the upper atmosphere is essentially all that can be observed and studied remotely with some deeper access from emitted microwave radiation.

References and Further Reading

1 Bracalante, E. M., et al. The SASS scattering coefficient algorithm. IEEE Journal of Oceanic Engineering OE‐5, 145–153, 1980.

2 Chahine, M., et al. Interaction mechanisms within the atmosphere, Chapter 5. In Manual of Remote Sensing. American Society of Photogrammetry, Falls Church, VA, 1983.

3 Colwell, R. N. (Ed.). Manual of Remote Sensing. American Society of Photogrammetry, Falls Church, VA, 1983.

4 Kramer, H. J. Observation of the Earth and its Environment – Survey of Missions and Sensors. Springer‐Verlag, Berlin, Germany, 2002.

5 Liu, C. T. Tropical Pacific sea surface temperatures measured by Seasat microwave radiometer and by ships. Journal of Geophysical Research, 88, 1909–1916, 1983.

6 Townsend, W. F. The initial assessment of the performance achieved by the Seasat radar altimeter. IEEE Journal of Oceanic Engineering, OE‐5, 80–92, 1980.

7 Waters, J., et al. Remote sensing of atmospheric temperature profiles with the Nimbus 5 microwave spectrometer. Journal of the Atmospheric Sciences, 32(10), 1953–1969, 1975.

2 Nature and Properties of Electromagnetic Waves

2.1 Fundamental Properties of Electromagnetic Waves

Electromagnetic energy is the means by which information is transmitted from an object to the sensor. Information could be encoded in the frequency content, intensity, or polarization of the electromagnetic wave. The information is propagated by electromagnetic radiation at the velocity of light from the source directly through free space, or indirectly by reflection, scattering, and reradiation to the sensor. The interaction of electromagnetic waves with natural surfaces and atmospheres is strongly dependent on the frequency of the waves. Waves in different spectral bands tend to excite different interaction mechanisms such as electronic, molecular, or conductive mechanisms.

2.1.1 Electromagnetic Spectrum

The electromagnetic spectrum is divided into a number of spectral regions. For the purpose of this text, we use the classification illustrated in Figure 2.1.

The radio band covers the region of wavelengths longer than 10 cm (frequency less than 3 GHz). This region is used by active radio sensors such as imaging radars, altimeters, and sounders, and, to a lesser extent, passive radiometers.

The microwave band covers the neighboring region, down to a wavelength of 1 mm (300 GHz frequency). In this region, most of the interactions are governed by molecular rotation, particularly at the shorter wavelengths. This region is mostly used by microwave radiometers/spectrometers and radar systems.

The infrared band covers the spectral region from 1 mm to 0.7 μm. This region is sometimes subdivided into subregions called submillimeter, far infrared, thermal infrared, and near infrared. In this region, molecular rotation and vibration play an important role. Imagers, spectrometers, radiometers, polarimeters, and lasers are used in this region for remote sensing. The same is true in the neighboring region, the visible region (0.7–0.4 μm) where electronic energy levels start to play a key role.

In the next region, the ultraviolet (0.4 μm to 300 Å), electronic energy levels play the main role in wave–matter interaction. Ultraviolet sensors have been used mainly to study planetary atmospheres or to study surfaces with no atmospheres because of the opacity of gases at these short wavelengths.

X‐rays (300–0.3 Å) and gamma rays (shorter than 0.3 Å) have been used to an even lesser extent because of atmospheric opacity. Their use has been limited to low‐flying aircraft platforms or to the study of planetary surfaces with no atmosphere (e.g., Moon).

Figure 21 Electromagnetic spectrum 212 Maxwells Equations The behavior - фото 21

Figure 2.1 Electromagnetic spectrum.

2.1.2 Maxwell’s Equations

The behavior of electromagnetic waves in free space is governed by Maxwell’s equations:

(2.1) Introduction to the Physics and Techniques of Remote Sensing - изображение 22

(2.2) Introduction to the Physics and Techniques of Remote Sensing - изображение 23

(2.3) картинка 24

(2.4) картинка 25

(2.5) картинка 26

(2.6) картинка 27

where

E = electric vector

D = displacement vector

H = magnetic vector

B = induction vector

μ0, ∈0 = permeability and permittivity of vacuum

μr, ∈r = relative permeability and permittivity

∇. = divergence

∇x = curl

Maxwell’s concept of electromagnetic waves is that a smooth wave motion exists in the magnetic and electric force fields. In any region where there is a temporal change of the electric field, a magnetic field appears automatically in that same region as a conjugal partner and vice‐versa. This is expressed by the above coupled equations.

2.1.3 Wave Equation and Solution

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Introduction to the Physics and Techniques of Remote Sensing»

Представляем Вашему вниманию похожие книги на «Introduction to the Physics and Techniques of Remote Sensing» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Introduction to the Physics and Techniques of Remote Sensing»

Обсуждение, отзывы о книге «Introduction to the Physics and Techniques of Remote Sensing» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x