Daniel J. Denis - Applied Univariate, Bivariate, and Multivariate Statistics

Здесь есть возможность читать онлайн «Daniel J. Denis - Applied Univariate, Bivariate, and Multivariate Statistics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Applied Univariate, Bivariate, and Multivariate Statistics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Univariate, Bivariate, and Multivariate Statistics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

AN UPDATED GUIDE TO STATISTICAL MODELING TECHNIQUES USED IN THE SOCIAL AND BEHAVIORAL SCIENCES The revised and updated second edition of
contains an accessible introduction to statistical modeling techniques commonly used in the social and behavioral sciences. The text offers a blend of statistical theory and methodology and reviews both the technical and theoretical aspects of good data analysis.
Featuring applied resources at various levels, the book includes statistical techniques using software packages such as R and SPSS®. To promote a more in-depth interpretation of statistical techniques across the sciences, the book surveys some of the technical arguments underlying formulas and equations. The thoroughly updated edition includes new chapters on nonparametric statistics and multidimensional scaling, and expanded coverage of time series models. The second edition has been designed to be more approachable by minimizing theoretical or technical jargon and maximizing conceptual understanding with easy-to-apply software examples. This important text:
Offers demonstrations of statistical techniques using software packages such as R and SPSS® Contains examples of hypothetical and real data with statistical analyses Provides historical and philosophical insights into many of the techniques used in modern social science Includes a companion website that includes further instructional details, additional data sets, solutions to selected exercises, and multiple programming options Written for students of social and applied sciences,
offers a text to statistical modeling techniques used in social and behavioral sciences.

Applied Univariate, Bivariate, and Multivariate Statistics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Applied Univariate, Bivariate, and Multivariate Statistics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

2.14 MAXIMUM LIKELIHOOD

When we speak of likelihood, we mean the probability of some sample data or set of observations conditional on some hypothesized parameter or set of parameters (Everitt, 2002). Conditional probability statements such as p ( D / H 0) can very generally be considered simple examples of likelihoods, where typically the set of parameters, in this case, may be simply μ and σ 2. A likelihood functionis the likelihood of a parameter given data (see Fox, 2016).

When we speak of maximum‐likelihoodestimation, we mean the process of maximizing a likelihood subject to certain parameter conditions. As a simple example, suppose we obtain 8 heads on 10 flips of a presumably fair coin. Our null hypothesis was that the coin is fair, meaning that the probability of heads is p ( H ) = 0.5. However, our actual obtained result of 8 heads on 10 flips would suggest the true probability of heads to be closer to p ( H ) = 0.8. Thus, we ask the question:

Which value of θ makes the observed result most likely?

If we only had two choices of θ to select from, 0.5 and 0.8, our answer would have to be 0.8, since this value of the parameter θ makes the sample result of 8 heads out of 10 flips most likely. That is the essence of how maximum‐likelihood estimation works (see Hays, 1994, for a similar example). ML is the most common method of estimating parameters in many models, including factor analysis, path analysis, and structural equation models to be discussed later in the book. There are very good reasons why mathematical statisticians generally approve of maximum likelihood. We summarize some of their most favorable properties.

Firstly, ML estimators are asymptotically unbiased, which means that bias essentially vanishes as sample size increases without bound (Bollen, 1989). Secondly, ML estimators are consistentand asymptotically efficient, the latter meaning that the estimator has a small asymptotic variance relative to many other estimators. Thirdly, ML estimators are asymptotically normally distributed, meaning that as sample size grows, the estimator takes on a normal distribution. Finally, ML estimators possess the invarianceproperty (see Casella and Berger, 2002, for details).

2.15 AKAIKE'S INFORMATION CRITERIA

A measure of model fit commonly used in comparing models that uses the log‐likelihood is Akaike's information criteria, or AIC(Sakamoto, Ishiguro, and Kitagawa, 1986). This is one statistic of the kind generally referred to as penalized likelihoodstatistics (another is the Bayesian information criterion, or BIC). AIC is defined as:

Applied Univariate Bivariate and Multivariate Statistics - изображение 136

where L mis the maximized log‐likelihood and m is the number of parameters in the given model. Lower values of AIC indicate a better‐fitting model than do larger values. Recall that the more parameters fit to a model, in general, the better will be the fit of that model. For example, a model that has a unique parameter for eachdata point would fit perfectly. This is the so‐called saturatedmodel. AIC jointly considers both the goodness of fit as well as the number of parameters required to obtain the given fit, essentially “penalizing” for increasing the number of parameters unless they contribute to model fit. Adding one or more parameters to a model may cause −2 L mto decrease (which is a good thing substantively), but if the parameters are not worthwhile, this will be offset by an increase in 2 m .

The Bayesian information criterion, or BIC(Schwarz, 1978) is defined as −2 L m+ m log( N ), where m , as before, is the number of parameters in the model and N the total number of observations used to fit the model. Lower values of BIC are also desirable when comparing models. BIC typically penalizes model complexity more heavily than AIC. For a comparison of AIC and BIC, see Burnham and Anderson (2011).

2.16 COVARIANCE AND CORRELATION

The covariance of a random variable is given by:

where E x i μ x y i μ y is equal to E x i y i μ x μ ysince - фото 137

where E [( x i− μ x)( y i− μ y)] is equal to E ( x i y i) − μ x μ ysince

The concept of covariance is at the heart of virtually all statistical methods - фото 138

The concept of covariance is at the heart of virtually all statistical methods. Whether one is running analysis of variance, regression, principal component analysis, etc. covariance concepts are central to all of these methodologies and even more broadly to science in general.

The sample covariance is a measure of relationship between two variables and is defined as:

(2.5) Applied Univariate Bivariate and Multivariate Statistics - изображение 139

The numerator of the covariance, Applied Univariate Bivariate and Multivariate Statistics - изображение 140, is the sum of products of respective deviations of observations from their respective means. If there is no linearrelationship between two variables in a sample, covariance will equal 0. If there is a negativelinear relationship, covariance will be a negative number, and if there is a positivelinear relationship covariance will be positive. Notice that to measure covariance between two variables requires there to be variabilityon each variable. If there is no variability in x i, then картинка 141will equal 0 for all observations. Likewise, if there is no variability in y i, then картинка 142will equal 0 for all observations on y i. This is to emphasize the essential fact that when measuring the extent of relationship between two variables, one requires variability on each variable to motivate a measure of relationship in the first place.

The covariance of (2.5)is a perfectly reasonable one to calculate for a sample if there is no intention of using that covariance as an estimator of the population covariance. However, if one wishes to use it as an unbiased estimator, similar to how we needed to subtract 1 from the denominator of the variance, we lose 1 degree of freedom when computing the covariance:

It is easy to understand more of what the covariance actually measures if we - фото 143

It is easy to understand more of what the covariance actually measures if we consider the trivial case of computing the covariance of a variable with itself. In such a case for variable x i, we would have

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Applied Univariate, Bivariate, and Multivariate Statistics»

Представляем Вашему вниманию похожие книги на «Applied Univariate, Bivariate, and Multivariate Statistics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Applied Univariate, Bivariate, and Multivariate Statistics»

Обсуждение, отзывы о книге «Applied Univariate, Bivariate, and Multivariate Statistics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x