Daniel J. Denis - Applied Univariate, Bivariate, and Multivariate Statistics

Здесь есть возможность читать онлайн «Daniel J. Denis - Applied Univariate, Bivariate, and Multivariate Statistics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Applied Univariate, Bivariate, and Multivariate Statistics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Applied Univariate, Bivariate, and Multivariate Statistics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

AN UPDATED GUIDE TO STATISTICAL MODELING TECHNIQUES USED IN THE SOCIAL AND BEHAVIORAL SCIENCES The revised and updated second edition of
contains an accessible introduction to statistical modeling techniques commonly used in the social and behavioral sciences. The text offers a blend of statistical theory and methodology and reviews both the technical and theoretical aspects of good data analysis.
Featuring applied resources at various levels, the book includes statistical techniques using software packages such as R and SPSS®. To promote a more in-depth interpretation of statistical techniques across the sciences, the book surveys some of the technical arguments underlying formulas and equations. The thoroughly updated edition includes new chapters on nonparametric statistics and multidimensional scaling, and expanded coverage of time series models. The second edition has been designed to be more approachable by minimizing theoretical or technical jargon and maximizing conceptual understanding with easy-to-apply software examples. This important text:
Offers demonstrations of statistical techniques using software packages such as R and SPSS® Contains examples of hypothetical and real data with statistical analyses Provides historical and philosophical insights into many of the techniques used in modern social science Includes a companion website that includes further instructional details, additional data sets, solutions to selected exercises, and multiple programming options Written for students of social and applied sciences,
offers a text to statistical modeling techniques used in social and behavioral sciences.

Applied Univariate, Bivariate, and Multivariate Statistics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Applied Univariate, Bivariate, and Multivariate Statistics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

We borrow our definition of the central limit theorem from Everitt (2002):

If a random variable y has a population mean μ and population variance σ 2, then the sample mean, картинка 118, based on n observations, has an approximate normal distribution with mean μ and variance картинка 119, for sufficiently large n . (p. 64)

Asymptotically, the distribution of a normal random variable convergesto that of a normal distribution as n → ∞. A multivariate version of the theorem can also be given (e.g., see Rencher, 1998, p. 53). 7

The relevance and importance of the central limit theorem cannot be overstated: it allows one to know, at least on a theoretical level, what the distribution of a statistic (e.g., sample mean) will look like for increasing sample size. This is especially important if one is drawing samples from a population for which the shape is not known or is known a priori to be nonnormal. Normality of the sampling distribution, for adequate sample size, is still assured even if samples are drawn from nonnormal populations. Why is this relevant? It is relevant because if we know what the distribution of means will look like for increasing sample size, then we know we can compare our obtained statistic to a normal distribution in order to estimate its probability of occurrence. Normality assumptions are also typically required for assuming independence between картинка 120and s 2in univariate contexts (Lukacs, 1942), and картинка 121(mean vector) and S(covariance matrix) in multivariate ones. When such estimators can be assumed to arise from normal or multivariate normal distributions (i.e., in the case of картинка 122and S) we can generally be assured one is independent of the other.

2.13 CONFIDENCE INTERVALS

Recall that a goal of statistical inference is to estimate functions of parameters, whether a single parameter, a difference of parameters (for instance, in the case of population differences), or some other function of parameters. Though the sample mean картинка 123is an unbiased estimator of μ , the probability that картинка 124is equal to μ in any given sample, for a continuous measure, converges to zero(Hays, 1994). For this reason, and to build some flexibility in estimation overall, the idea of interval estimationin the form of confidence intervalswas developed. Confidence intervals provide a range of values for which we can be relatively certain lay the true parameter we are seeking to estimate. In what follows, we provide a brief review of 95 and 99% confidence intervals.

We can say that over all samples of a given size n , the probability is 0.95 for the following event to occur:

(2.2) Applied Univariate Bivariate and Multivariate Statistics - изображение 125

How was (2.2)obtained? Recall the calculation of a z ‐score for a mean:

Applied Univariate Bivariate and Multivariate Statistics - изображение 126

Suppose now that we want to have a 0.025 area on either side of the normal distribution. This value corresponds to a z ‐score of 1.96, since the probability of a z ‐score of ±1.96 is 2(1 – 0.9750021) = 0.0499958, which is approximately 5% of the total curve. So, from the z ‐score, we have

We can modify the equality slightly to get the following 23 We interpret - фото 127

We can modify the equality slightly to get the following:

(2.3) We interpret 23as follows Over all possible samples the probability is - фото 128

We interpret (2.3)as follows:

Over all possible samples, the probability is 0.95 that the range between Applied Univariate Bivariate and Multivariate Statistics - изображение 129 and Applied Univariate Bivariate and Multivariate Statistics - изображение 130 will include the true mean, μ.

Very important to note regarding the above statement is that μ is notthe random variable. The part that is random is the sample on which is computed the interval. That is, the probability statement is not about μ but rather is about samples. The population mean μ is assumed to be fixed. The 95% confidence interval tells us that if we continued to sample repeatedly, and on each sample computed a confidence interval, then 95% of these intervals would include the true parameter.

The 99% confidence interval for the mean is likewise given by:

(2.4) Notice that the only difference between 23and 24is the choice of - фото 131

Notice that the only difference between (2.3)and (2.4)is the choice of different critical values on either side of μ (i.e., 1.96 for the 95% interval and 2.58 for the 99% interval).

Though of course not very useful, a 100% confidence interval, if constructed, would be defined as:

If you think about it carefully the 100 confidence interval should make - фото 132

If you think about it carefully, the 100% confidence interval should make perfect sense. If you would like to be 100% “sure” that the interval will cover the true population mean, then you have to extend your limits to negative and positive infinity, otherwise, you could not be fullyconfident. Likewise, on the other extreme, a 0% interval would simply have картинка 133as the upper and lower limits:

картинка 134

That is, if you want to have zero confidencein guessing the location of the population mean, μ , then guess the sample mean картинка 135. Though the sample mean is an unbiased estimator of the population mean, the probability that the sample mean covers the population mean exactly, as mentioned, essentially converges to 0 for a truly continuous distribution (Hays, 1994). As an analogy, imagine coming home and hugging your spouse. If your arms are open infinitely wide (full “bear hug”), you are 100% confident to entrap him or her in your hug because your arms (limits of the interval) extend to positive and negative infinity. If you bring your arms in a little, then it becomes possible to miss him or her with the hug (e.g., 95% interval). However, the precision of the hug is a bit more refined (because your arms are closing inward a bit instead of extending infinitely on both sides). If you approach your spouse with hands together (i.e., point estimate), you are sure to miss him or her, and would have 0% confidence of your interval (hug) entrapping your spouse. An inexact analogy to be sure, but useful in visualizing the concept of confidence intervals.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Applied Univariate, Bivariate, and Multivariate Statistics»

Представляем Вашему вниманию похожие книги на «Applied Univariate, Bivariate, and Multivariate Statistics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Applied Univariate, Bivariate, and Multivariate Statistics»

Обсуждение, отзывы о книге «Applied Univariate, Bivariate, and Multivariate Statistics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x