Pascal Ribéreau-Gayon - Handbook of Enology, Volume 2

Здесь есть возможность читать онлайн «Pascal Ribéreau-Gayon - Handbook of Enology, Volume 2» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Handbook of Enology, Volume 2: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Handbook of Enology, Volume 2»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

As an applied science, Enology is a collection of knowledge from the fundamental sciences including chemistry, biochemistry, microbiology, bioengineering, psychophysics, cognitive psychology, etc., and nourished by empirical observations. The approach used in the
is thus the same. It aims to provide practitioners, winemakers, technicians and enology students with foundational knowledge and the most recent research results. This knowledge can be used to contribute to a better definition of the quality of grapes and wine, a greater understanding of chemical and microbiological parameters, with the aim of ensuring satisfactory fermentations and predicting the evolution of wines, and better mastery of wine stabilization processes. As a result, the purpose of this publication is to guide readers in their thought processes with a view to preserving and optimizing the identity and taste of wine and its aging potential.
This third English edition of
, is an enhanced translation from the 7th French 2017 edition, and is published as a two-volume set describing aspects of winemaking using a detailed, scientific approach. The authors, who are highly-respected enologists, examine winemaking processes, theorizing what constitutes a perfect technique and the proper combination of components necessary to produce a quality vintage. They also illustrate methodologies of common problems, revealing the mechanism behind the disorder, thus enabling a diagnosis and solution.
Volume 2:
The Chemistry of Wine and Stabilization and Treatments Coverage includes: Wine chemistry; Organic acids; Alcohols and other volatile products; Carbohydrates; Dry extract and mineral matter; Nitrogen substances; Phenolic compounds; The aroma of grape varieties; The chemical nature, origin and consequences of the main organoleptic defects; Stabilization and treatment of wines; The chemical nature, origin and consequences of the main organoleptic defects; The concept of clarity and colloidal phenomena; Clarification and stabilization treatments; Clarification of wines by filtration and centrifugation; The stabilization of wines by physical processes; The aging of wines in vats and in barrels and aging phenomena.
The target audience includes advanced viticulture and enology students, professors and researchers, and practicing grape growers and vintners.

Handbook of Enology, Volume 2 — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Handbook of Enology, Volume 2», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

On the other hand, it is a good thing that wines have such low pH values, as this enhances their microbiological and physicochemical stability. Low pH hinders the development of microorganisms while increasing the antiseptic fraction of sulfur dioxide. The influence of pH on physicochemical stability is due to its effect on the solubility of tartrates, in particular potassium bitartrate but, above all, calcium tartrate and the double salt calcium tartromalate.

Iron casse, or iron haze, is also affected by pH. Indeed, iron (III), or ferric iron, establishes soluble complexes with molecules such as citric acid. These complexes are destabilized by increasing pH to produce insoluble salts, such as ferric phosphates (see “white casse”) or even ferric hydroxide, Fe(OH) 3.

1.4.2 Expression of pH in Wine

Wines are mixtures of weak acids, combined to form salts to a greater or lesser extent according to their p K a( Table 1.3). The proportion of salts also depends on geographical origin, grape variety, the way the vines are trained, and the pressing and winemaking methods used.

Due to their composition, musts and wines are acid–base “buffer” solutions, i.e. a modification in their chemical composition produces only a limited variation in pH. This explains the relatively small variations in the pH of must during alcoholic and malolactic fermentations.

The pH of a solution containing a weak monoprotic acid and its strong basic salt proves the Henderson–Hasselbalch equation:

(1.2) This equation is applicable to must and wine where the most important acids - фото 17

This equation is applicable to must and wine, where the most important acids are diacids. It is an approximation, assuming the additivity of the acidity contributed by each acid to the total. The application of Equation (1.2)also makes the simplifying assumption that the degree to which the acids are combined in salts is independent of each other. These assumptions are currently being challenged. Indeed, recent research has shown that organic acids react among themselves, as well as with amino acids (Dartiguenave et al ., 2000a).

FIGURE 13 Comparison of the titration curves of a must and the corresponding - фото 18

FIGURE 1.3 Comparison of the titration curves of a must and the corresponding wine.

Comparison ( Table 1.3) of the p K avalues of tartaric (3.01), malic (3.46), lactic (3.81), and succinic (4.18) acids leads to the conclusion that tartaric acid is the “strongest,” so it will take priority in forming salts, displacing, at least partially, the weaker acids. In reality, all of the acids interact. Experimental proof of this is given by the neutralization curve of a must, or the corresponding wine, obtained using sodium or potassium hydroxide ( Figure 1.3). These curves have no inflection points at pH corresponding to the p K avalues of the various acids, as there is at least partial overlapping of the maximum “buffer” zones (p K a± 1). Thus, the neutralization curves are quasi‐linear for pH values ranging from 10 to 90% neutralized acidity. They therefore indicate a constant buffer capacity in this zone. From a more quantitative standpoint, a comparison of the neutralization curves of must and the corresponding wine shows that the total acidity values, assessed by the volume of sodium hydroxide added to obtain pH 7, differ by 0.55 mEq. In the example described above, both must and wine samples were 50 ml, and the total acidity of the wine was 11 mEq/l (0.54 g/l as H 2SO 4) lower than that of the must. This drop in total acidity in wine may be attributed to a slight consumption of malic acid by the yeast during alcoholic fermentation, as well as a partial precipitation of potassium bitartrate (insoluble in alcohol).

The slope of the linear segment of the two neutralization curves differs noticeably. The curve corresponding to the must has a gentler slope, showing that it has a greater buffer capacity than the wine.

The next paragraph gives an in‐depth description of this important physicochemical parameter of wine.

1.4.3 The “Buffer” Capacity of Musts and Wines

The acid–base buffer capacity of wines is largely responsible for their physicochemical and microbiological stability, as well as their flavor balance. For example, the length of time a wine leaves a fresh impression on the palate is directly related to the formation of acid salts by basic proteins in saliva, i.e. the expression of the buffer phenomenon and its capacity. In contrast a wine that tastes “flat” has a low buffer capacity, but this does not necessarily mean that it has a low acidity level. At a given total acidity level, buffer capacity varies according to the composition and type of acids present. This point will be developed later in this chapter.

In a particular year, a must's total acidity and acid composition depend mainly on geography, soil conditions, and climate, including soil humidity and permeability, as well as rainfall patterns, and, above all, temperature. Temperature determines the respiration rate, i.e. the combustion of tartaric and, especially, malic acids in grape flesh cells. The predominance of malic acid in must from cool‐climate vineyards is directly related to temperature, while malic acid is eliminated from grapes in hotter regions by combustion and is thus found in much lower amounts than tartaric acid.

Independently of climate, grape growers and winemakers have some control over total acidity and even the acid composition of the grape juice during ripening. Leaf thinning and shoot trimming restrict acid biosynthesis and, above all, combustion by reducing the greenhouse effect of the leaf canopy. Another way of controlling total acidity levels is by choosing the harvesting date. Grapes intended for sparkling wines must be picked at the correct level of technological ripeness to produce must with a total acidity of 9–10 g/l as H 2SO 4. This acidity level is necessary to maintain the wines' freshness and, especially, to minimize color leaching from the red grape varieties, Pinot Noir and Pinot Meunier, used in Champagne. At this stage in the ripening process, the grape skins are much less fragile than they are when completely ripe. The last method for controlling the total acidity of must is by taking great care in pressing the grapes and keeping the juice from each pressing separate (Volume 1, Section 14.3.2). In the Champagne region, the cuvée corresponds to juice from the mid‐part of the flesh (furthest from the skin and seeds), where it has the highest sugar and acidity levels.

Once the grapes have been pressed, winemakers have other means of raising or lowering the acidity of a must or wine. It may be necessary to acidify “flat” white wines by adding tartaric acid after malolactic fermentation in years when the grapes have a high malic acid content. This is mainly the case in cool‐climate vineyards, where the malic acid is not consumed during ripening. The disadvantage is that it causes an imbalance in the remaining total acidity, which then consists exclusively of a diacid, tartaric acid, and its monopotassium salt.

One method that is little‐known, or at least rarely used to avoid this total acidity imbalance, consists in partially or completely eliminating the malic acid by chemical means using a mixture of calcium tartrate and calcium carbonate. This method precipitates the double salt, calcium tartromalate ( Section 1.4.4, Figure 1.9), and is a very flexible process. When the malic acid is partially eliminated, the wine has a buffer capacity based on those of both tartaric and malic acids, and not just on that of the former. Tartrate buffer capacity is less stable over time, as it decreases due to the precipitation of monopotassium and calcium salts during aging, whereas the malic acid salts are much more soluble.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Handbook of Enology, Volume 2»

Представляем Вашему вниманию похожие книги на «Handbook of Enology, Volume 2» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Handbook of Enology, Volume 2»

Обсуждение, отзывы о книге «Handbook of Enology, Volume 2» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x