Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics

Здесь есть возможность читать онлайн «Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book,
, left off,
introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of
in order to be understandable.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes. Field theory, including discussions of gauges for product spaces and quantum electrodynamics. Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within. An introduction to basic gauge integral theory. The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable «Black Box» theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil,
is an illuminating and insightful exploration of the complex mathematical topics contained within.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
trivially In effect the randomvariableasmeasurablefunction approach of - фото 731

trivially. In effect, the random‐variable‐as‐measurable‐function approach of classical theory reduces to the “naive” or “realistic” method, in which the probabilities pertain to outcomes картинка 732, and are not primarily inherited from some abstract measurable space картинка 733.

Alternatively, let the sample space be картинка 734and let картинка 735be the class of Borel subsets of картинка 736(so картинка 737includes the singletons картинка 738for each картинка 739). Define Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 740on Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 741by Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 742and

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 743

so Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 744is atomic. As before, with Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 745,

Classical probability involves a quite heavy burden of sophisticated and - фото 746

Classical probability involves a quite heavy burden of sophisticated and complicated measure theory. There are good historical reasons for this, and it is unwise to gloss over it. In practice, however, the sample space картинка 747, in which probability measure картинка 748is specified, is often chosen—as above—in such a way that measure‐theoretic abstractions and complexities melt away, so that the “natural” or untutored approach, involving just outcomes and their probabilities, is applicable.

[MTRV] shows how to formulate an effective theory of probability which follows naturally from the naive or realistic approach described above, and which does not require the theory of measure as its foundation. The following pages are intended to convey the basic ideas of this approach.

Before moving on to this, here is an elaboration of a technical point of a financial character, which appeared in Example 5above and in the ensuing discussion, and which is relevant in stochastic integration.

Example 6

Expression ( 2.5) above gives two representations of a stochastic integral,

based on sample value calculations 24 210 derived from 22 and - фото 749

based on sample value calculations ( 2.4:

(2.10) derived from 22 and 23 If and - фото 750

derived from ( 2.2) and ( 2.3):

If and are to be treated as functions of a continuous variable - фото 751

If картинка 752and Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 753are to be treated as functions of a continuous variable Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 754for Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 755, this suggests calculations or estimates on the lines of

(2.11) where is a partition of For Example 5the sample calculati - фото 756

where is a partition of For Example 5the sample calculation 24 of total - фото 757is a partition of For Example 5the sample calculation 24 of total portfolio value leads - фото 758.

For Example 5the sample calculation ( 2.4) of total portfolio value leads unproblematically to the random variable representation ( 2.5), Though we have not yet settled on a meaning for stochastic integral the - фото 759. Though we have not yet settled on a meaning for stochastic integral, the discrete expression

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 760

points towards Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 761as a continuous variable form of stochastic integral. It seems that the sample value form of the latter should be the Riemann‐Stieltjes integral Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 762, for which a Riemann sum estimate is

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Представляем Вашему вниманию похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Обсуждение, отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x