Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics

Здесь есть возможность читать онлайн «Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book,
, left off,
introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of
in order to be understandable.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes. Field theory, including discussions of gauges for product spaces and quantum electrodynamics. Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within. An introduction to basic gauge integral theory. The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable «Black Box» theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil,
is an illuminating and insightful exploration of the complex mathematical topics contained within.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The set of outcomes of a single throw of a coin is the set Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 436, and the family of subsets of is and is a measurable space Define the following function to represe - фото 437is

and is a measurable space Define the following function to represent the coin - фото 438

and is a measurable space Define the following function to represent the coin - фото 439is a measurable space. Define the following function to represent the coin tossing experiment:

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 440

Then, for Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 441, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 442so картинка 443is a картинка 444‐measurable function.

There are many different ways of defining the probability space. It is natural to use real‐number‐valued functions, so the outcomes картинка 445can be denoted картинка 446and картинка 447instead of H and T, and the measurable function картинка 448can then be the identity function. (It is usual that the values of a random variable are represented as real numbers 2 ; with expected—mean or average—value, variance, and so on; which are also real numbers.)

But no matter what way this construction is done, the classical, rigorous mathematical representation by measurable function is evidently more complicated than the naive or natural view of the coin tossing experiment. In contrast, the purpose of this book is to provide a rigorous theory of stochastic integration/summation which (like [MTRV]) bypasses the “measurable function” view, and which is closer to the “naive realistic” view.

Example 3

Throw a pair of dice and, whenever the sum of the numbers observed exceeds 10, pay out a wager equal to the sum of the two numbers thrown, and otherwise receive a payment equal to the smaller of the two numbers observed. If the two are the same number (with sum not exceeding 10) then the payout is that number.

In Example 3take sample space

Observation of a throw of the pair of dice can be represented by a listing of - фото 449

Observation of a throw of the pair of dice can be represented by a listing of the possible joint outcomes Define a random variable - фото 450, Define a random variable by - фото 451, Define a random variable by for each - фото 452. Define a random variable Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 453by

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 454

for each Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 455. Then, as in the previous example where the domain and range of Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 456are finite sets, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 457is Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 458‐measurable and qualifies as a random variable, with expected value

The integral in this case reduces to the sum of a finite number of terms The - фото 459

The integral in this case reduces to the sum of a finite number of terms.

The payoff from the wager in Example 3is a randomly variable amount given by

In this case is a composite of the deterministic function with the random - фото 460

In this case, картинка 461is a composite of the deterministic function картинка 462with the random variable картинка 463; and, just like Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 464, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 465is (trivially) Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 466‐measurable, and is a random variable, with

where again the Lebesgue integral reduces trivially to a finite sum of - фото 467

where, again, the Lebesgue integral reduces (trivially) to a finite sum of terms.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Представляем Вашему вниманию похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Обсуждение, отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x