Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics

Здесь есть возможность читать онлайн «Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book,
, left off,
introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of
in order to be understandable.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes. Field theory, including discussions of gauges for product spaces and quantum electrodynamics. Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within. An introduction to basic gauge integral theory. The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable «Black Box» theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil,
is an illuminating and insightful exploration of the complex mathematical topics contained within.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Take initial value (at time картинка 549) of the share to be картинка 550(or картинка 551), take the initial shareholding or number of shares owned to be картинка 552(or Then at end of day 1 21 At end of day - фото 553). Then, at end of day 1 ( 21 At end of day 22 - фото 554),

(2.1) At end of day 22 After - фото 555

At end of day 22 After days 23 - фото 556,

(2.2) After days 23 If the time increments are reduce - фото 557

After days 23 If the time increments are reduced to arbitrarily small size so - фото 558days,

(2.3) If the time increments are reduced to arbitrarily small size so represents - фото 559

If the time increments are reduced to arbitrarily small size (so represents number of time ticksfractions of a second say with the meaning - фото 560represents number of “time ticks”—fractions of a second, say), with the meaning of the other variables adjusted accordingly, then

(2.4) Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 561

The latter expressions are Riemann sum estimates of Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 562(a Stieltjes‐type integral) whenever the latter exists.

Each of the expressions in ( 2.4) is sample value of a random variable

(2.5) constructed from the random variables and - фото 563

constructed from the random variables картинка 564, картинка 565, and картинка 566. These notations symbolize—in a “naive” or “realistic” way—the stochastic integral of the process картинка 567with respect to the process картинка 568. In chapter 8of [MTRV], symbols картинка 569, or картинка 570, or картинка 571are used (in place of the symbol картинка 572) for various kinds of stochastic integral. In the context described here, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 573would be the appropriate notation. (See (5.28) below.)

To illustrate the details of this basic stochastic integration, suppose the time increment is 1 day, so Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 574tracks the process over four days. Suppose the initial value of the share at the start of day 1 is Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 575. Suppose on each day the value of the share can change by картинка 576or картинка 577. That is, an “up” increment (U) or “down” increment (D). (Although the probabilities involved will not be used at this stage, in order to keep random variability in mind suppose that, at the end of each day, U occurs with probability картинка 578and suppose D occurs with probability Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 579.)

Suppose initial stockholding at start of day 1 is Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 580, or 1 share, and suppose the shareholder buys an extra share whenever the share value increases (U), and otherwise keeps the same number of shares. So there are no circumstances in which shareholding is decreased. (It is easy to imagine that the investor would apply a less optimistic and more prudent share purchasing strategy. But for purpose of illustration some particular strategy must be chosen, and this one is easy to describe.)

The up (U) or down (D) changes in share price over four days are listed in Table 2.4. There are картинка 581, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 582, possible processes or histories, corresponding to the 16 possible permutations‐with‐repetition of the 2 symbols U and D, taken four at a time.

With Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 583and Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 584, the histories or processes of interest are prices holdings and total gains represented by - фото 585; holdings and total gains represented by with - фото 586; and total gains represented by with representing the daily changes in the value - фото 587; represented by

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Представляем Вашему вниманию похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Обсуждение, отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x