Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics

Здесь есть возможность читать онлайн «Patrick Muldowney - Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A stand-alone introduction to specific integration problems in the probabilistic theory of stochastic calculus Picking up where his previous book,
, left off,
introduces readers to particular problems of integration in the probability-like theory of quantum mechanics. Written as a motivational explanation of the key points of the underlying mathematical theory, and including ample illustrations of the calculus, this book relies heavily on the mathematical theory set out in the author’s previous work. That said, this work stands alone and does not require a reading of
in order to be understandable.
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics Stochastic calculus, including discussions of random variation, integration and probability, and stochastic processes. Field theory, including discussions of gauges for product spaces and quantum electrodynamics. Robust and thorough appendices, examples, illustrations, and introductions for each of the concepts discussed within. An introduction to basic gauge integral theory. The methods employed in this book show, for instance, that it is no longer necessary to resort to unreliable «Black Box» theory in financial calculus; that full mathematical rigor can now be combined with clarity and simplicity. Perfect for students and academics with even a passing interest in the application of the gauge integral technique pioneered by R. Henstock and J. Kurzweil,
is an illuminating and insightful exploration of the complex mathematical topics contained within.

Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 634

where Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 635is a “negative gain” or net loss. With this can be interpreted as the Stieltjes integral 3 Observe that the number - фото 636, this can be interpreted as the Stieltjes integral 3

Observe that the number of shares held at any time depends on whether the - фото 637

Observe that the number картинка 638of shares held at any time картинка 639depends on whether the share price Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 640has moved up or down. So Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 641, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 642, is a deterministic function of картинка 643; and the value of картинка 644varies randomly because картинка 645varies randomly.

The same applies to the values of картинка 646, including the terminal value картинка 647, or Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 648with Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 649. Table 2.5gives the respective process sample paths for processes, Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 650where the underlying share price process Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 651follows sequence DUUU (sample number 2 in Table 2.4).

Regarding notation, the symbols Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 652, and so on are used here in contrast to symbols etc which were used in - фото 653(and so on) are used here, in contrast to symbols картинка 654etc. which were used in discussion of stochastic calculus in Chapter 1. In the latter, the emphasis was on the classical rigorous theory in which random variables are measurable functions, and this is signalled by using картинка 655instead of картинка 656, etc.

Where картинка 657(rather than картинка 658etc.) is used, the purpose is to indicate the “naive” or “natural” outlook which sees random variability, not in terms of abstract mathematical measurable sets and functions, but in terms of actual occurrences such as tossing a coin, or such as the unpredictable rise and fall of prices.

A mathematically rigorous approach to random variation can be squarely based on the latter view, and in due course this will provide mathematical justification for notation Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 659etc.

Table 2.5describes two out of a possible total of sixteen outcomes, or sample paths, for each of the processes involved. But the tables do not examine the probabilities of the various outcomes. So Table 2.4, for instance, does not really shed much light on how the investment policy of the portfolio holder (shareholder) is capable of performing. The alternative outcomes of the policy are displayed in Table 2.4, but on its own the list of outcomes does not say whether a gain of wealth is more likely than an overall loss.

What if, for instance, we wish to determine the expected overall gain in the value of the shareholding at the end of four days? With Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 660, what is the value 4 of Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics - изображение 661?

This can be answered directly as follows.

Suppose the different possible amounts of total or net shareholding gain are known. Two of these, and , are calculated above. There are 16 possible sample paths for the underlying process corresponding to the 16 permutations of U, D. So, allowing for duplication of values, there are at most 14 other values for total shareholding gains.

The probability of each of the 16 values of is the same as the probability of the corresponding underlying sample path (or ). It is assumed that the probability of a U or D transition is 0.5 in each case. If it is further assumed that the transitions are independent, then the probability of each of the 16 sample paths is , or one sixteenth. This is then the probability of each of 16 outcomes for total shareholding gain, including duplicated values.

The 16 values for can be easily calculated as in Table 25above In fact the 16 outcomes for - фото 662can be easily calculated, as in Table 2.5above. In fact, the 16 outcomes for net wealth (shareholding value) gain are

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Представляем Вашему вниманию похожие книги на «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics»

Обсуждение, отзывы о книге «Gauge Integral Structures for Stochastic Calculus and Quantum Electrodynamics» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x