Eleftheria Papadimitriou - Statistical Methods and Modeling of Seismogenesis

Здесь есть возможность читать онлайн «Eleftheria Papadimitriou - Statistical Methods and Modeling of Seismogenesis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Statistical Methods and Modeling of Seismogenesis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Statistical Methods and Modeling of Seismogenesis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The study of earthquakes is a multidisciplinary field, an amalgam of geodynamics, mathematics, engineering and more. The overriding commonality between them all is the presence of natural randomness. Stochastic studies (probability, stochastic processes and statistics) can be of different types, for example, the black box approach (one state), the white box approach (multi-state), the simulation of different aspects, and so on. This book has the advantage of bringing together a group of international authors, known for their earthquake-specific approaches, to cover a wide array of these myriad aspects. A variety of topics are presented, including statistical nonparametric and parametric methods, a multi-state system approach, earthquake simulators, post-seismic activity models, time series Markov models with regression, scaling properties and multifractal approaches, selfcorrecting models, the linked stress release model, Markovian arrival models, Poisson-based detection techniques, change point detection techniques on seismicity models, and, finally, semi-Markov models for earthquake forecasting.

Statistical Methods and Modeling of Seismogenesis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Statistical Methods and Modeling of Seismogenesis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

[1.11] Figure 12 The dependence of density estimate on bandwidth h The actual - фото 20

Figure 12 The dependence of density estimate on bandwidth h The actual - фото 21

Figure 1.2. The dependence of density estimate on bandwidth, h. The actual distribution was the superposition of two normal distributions, 0.7 × NORM(0,1) + 0.3 × NORM(2,2). The exact PDF is presented in (a). The estimates were built from 500-element samples drawn from the actual distribution, using the normal kernel and constant bandwidths: (b) h = 0.1, (c) h = 0.25 and (d) h = 0.5. For a color version of this figure, see www.iste.co.uk/limnios/statistical.zip

When the interval [ x *, x *] is semi-finite, then the original sample is mirrored around and the sample - фото 22 картинка 23then the original sample is mirrored around Statistical Methods and Modeling of Seismogenesis - изображение 24and the sample Statistical Methods and Modeling of Seismogenesis - изображение 25 Statistical Methods and Modeling of Seismogenesis - изображение 26or the sample Statistical Methods and Modeling of Seismogenesis - изображение 27is used to estimate The desired estimates of PDF and CDF are 112 In connection with the - фото 28The desired estimates of PDF and CDF are:

[1.12] In connection with the abovementioned problems with probabilistic functional - фото 29

In connection with the above-mentioned problems with probabilistic functional models of earthquake parameters, the flexibility of kernel density estimation makes it a perfect tool for modeling the probabilistic distributions of such parameters. In particular, the kernel estimation method responds well to the needs of the PSHA.

The mathematical model in PSHA can be formulated, e.g., as the following expression for the probability that the ground motion amplitude parameter, amp , at the point ( x0 , y0 ), during D time units will exceed the value a ( x0 , y0 ):

Pr[ amp ( x 0, y 0) ≥ a ( x 0, y 0), D ] =

[1.13] where r x0 y0 is the epicentral distance of an earthquake to the - фото 30

where r ( x0 , y0 ) is the epicentral distance of an earthquake to the receiving point ( x0 , y0 ), M is the earthquake magnitude, N ( D ) is the number of earthquakes in D , Pr[ a m p ( x 0, y 0) ≥ a ( x 0, y 0)| M , r ] is the probability that amp will exceed a due to the earthquake of magnitude, M , being distanced from the receiving point of r , fr is the PDF of epicentral distance, f ( M | N ( D ) ≠ 0) is the probability density of earthquake magnitude, M , conditional upon earthquake occurrence in D and ℳ is its domain. fr is straightforwardly linked to the two-dimensional probability distribution of earthquake epicenters, fxy ( x , y ). fxy ( x , y ) and f ( M | N ( D ) ≠ 0) represent the properties of seismic source (source effect), and Pr[ a m p ( x 0, y 0) ≥ a ( x 0, y 0)| M , r ] represents the properties of the vibration transmission from the source to the receiving point (path and site effects).

The conditional probability of source magnitude, f ( M | N ( D ) ≠ 0), can be evaluated from the probability mass function (PMF) of the number of earthquakes in D time units, Pr[ N ( D )= n ], and the unconditional PDF, fM , and the CDF, FM , of magnitude:

[1.14] Under the assumption that the seismic occurrence process is Poissonian - фото 31

Under the assumption that the seismic occurrence process is Poissonian, equation [1.14]becomes:

[1.15] where λ is the rate of earthquake occurrence The seismic hazard is often only - фото 32

where λ is the rate of earthquake occurrence.

The seismic hazard is often only characterized by its source component, namely, by the probability that an earthquake of a magnitude greater than or equal to M occurs within D time units (the exceedance probability), R ( M , D ), or the expected average time between successive occurrences of earthquakes with magnitudes ≥ M (the mean return period), T ( M ). The exceedance probability reads:

[1.16] If the seismic occurrence process is considered as Poissonian then 117 - фото 33

If the seismic occurrence process is considered as Poissonian then:

[1.17] and 118 12 Complexity of magnitude distribution The most often used - фото 34

and

[1.18] 12 Complexity of magnitude distribution The most often used model of - фото 35

1.2. Complexity of magnitude distribution

The most often used model of magnitude distribution, f M( M ), F M( M ), results from the empirical Gutenberg–Richter relation, which predicts a linear dependence of the logarithm of the number of earthquakes with magnitudes greater than or equal to M on M . This yields a piecewise distribution of magnitude:

[1.19] where β is the distribution parameter and MC is the magnitude value beginning - фото 36

where β is the distribution parameter and MC is the magnitude value beginning from where all earthquakes have been statistically recorded and are in the earthquake catalog. MC is called the catalog completeness level. Earthquake magnitude represents the physical size of an earthquake; hence in an environment of finite dimensions, as seismogenic zones are, it cannot be unlimited. For this reason, among others, we often amend the model [1.19]with an endpoint. The upper-bounded model of magnitude PDF with a hard endpoint is:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Statistical Methods and Modeling of Seismogenesis»

Представляем Вашему вниманию похожие книги на «Statistical Methods and Modeling of Seismogenesis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Statistical Methods and Modeling of Seismogenesis»

Обсуждение, отзывы о книге «Statistical Methods and Modeling of Seismogenesis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x