Eleftheria Papadimitriou - Statistical Methods and Modeling of Seismogenesis

Здесь есть возможность читать онлайн «Eleftheria Papadimitriou - Statistical Methods and Modeling of Seismogenesis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Statistical Methods and Modeling of Seismogenesis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Statistical Methods and Modeling of Seismogenesis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

The study of earthquakes is a multidisciplinary field, an amalgam of geodynamics, mathematics, engineering and more. The overriding commonality between them all is the presence of natural randomness. Stochastic studies (probability, stochastic processes and statistics) can be of different types, for example, the black box approach (one state), the white box approach (multi-state), the simulation of different aspects, and so on. This book has the advantage of bringing together a group of international authors, known for their earthquake-specific approaches, to cover a wide array of these myriad aspects. A variety of topics are presented, including statistical nonparametric and parametric methods, a multi-state system approach, earthquake simulators, post-seismic activity models, time series Markov models with regression, scaling properties and multifractal approaches, selfcorrecting models, the linked stress release model, Markovian arrival models, Poisson-based detection techniques, change point detection techniques on seismicity models, and, finally, semi-Markov models for earthquake forecasting.

Statistical Methods and Modeling of Seismogenesis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Statistical Methods and Modeling of Seismogenesis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The kernel density estimation is a model-free estimation of probability functions of continuous random variables. The estimation is carried out solely from sample data.

There is no attempt here to comprehensively present the kernel density estimation method. A detailed description and the discussion of the method can be found in the textbooks by Silverman (1986), Wand and Jones (1995), Scott (2015) and in a multitude of high-level research papers. The method is also implemented in Matlab, R and Python, among others, and in many statistical packages. In this chapter, the author presents how this method has been applied to selected problems of seismology. This presentation begins with a short and simplified theoretical introduction. The kernel density estimation has been fast developing from both theoretical and practical sides; hence, the techniques presented here do not aspire to be optimal. There is plenty of space for future modifications and developments.

In the case of a univariate random variable X , and a constant kernel, the kernel estimator of the actual probability density function (PDF) of X , f X( x ), takes the form:

[1.1] where x i i 1 n is the sample data K is the kernel function - фото 2

where { x i}, i = 1,.., n is the sample data, K (•) is the kernel function, which is a PDF symmetric about zero, and h is the bandwidth, whose value decides how much smoothing has been applied to the sample data.

In the presented seismological applications of the kernel density estimation, we use the normal kernel function:

[1.2] For this kernel function the kernel estimates of PDF and the cumulative - фото 3

For this kernel function, the kernel estimates of PDF and the cumulative distribution function (CDF, are respectively 13 14 where Ф is th - фото 4) are, respectively:

[1.3] 14 where Ф is the CDF of standard normal distribution As it will - фото 5

[1.4] where Ф is the CDF of standard normal distribution As it will follow the - фото 6

where Ф(·) is the CDF of standard normal distribution.

As it will follow, the kernel method is used, among others, to estimate the magnitude distribution, whose distribution is exponential-like or light-tailed. Because of that, the tail values are sparse in a sample. Such sparsity can result in spurious irregularities in the estimate on tails, if a constant bandwidth is used. We can alleviate this problem by using an adaptive kernel with variable bandwidth. Because the estimates of magnitude distribution functions serve in the probabilistic seismic hazard analysis (PSHA), the quality of the estimate in the tail part is of utmost importance.

The adaptive kernel estimate of PDF used here takes the form:

[1.5] and the estimate of CDF is 16 where ωi are the local weights widening the - фото 7

and the estimate of CDF is:

[1.6] Statistical Methods and Modeling of Seismogenesis - изображение 8

where ωi are the local weights widening the bandwidth associated with the data points from the range where the data is sparse. The weights take the form:

[1.7] Statistical Methods and Modeling of Seismogenesis - изображение 9

where Statistical Methods and Modeling of Seismogenesis - изображение 10is the constant kernel PDF estimate in xi , equation [1.3], and g = Statistical Methods and Modeling of Seismogenesis - изображение 11The way in which the kernel estimate of PDF is composed and the difference between the estimation with a constant and a variable bandwidth are presented in Figure 1.1.

Figure 11 Buildup of the kernel estimate of PDF Normal kernel functions - фото 12

Figure 1.1. Buildup of the kernel estimate of PDF. Normal kernel functions (thick dashed lines) are associated with data points (triangles at abscissa). The PDF estimate (thin solid line) is the sum of the kernel functions. Whereas in the estimation with constant bandwidth, (a), all kernel functions are the same, in the estimation with variable bandwidth, (b), the kernels are wider in the regions of sparse data. For a color version of this figure, see www.iste.co.uk/limnios/statistical.zip

The final shape of the density estimate strongly depends on the value of h , which is demonstrated in the example in Figure 1.2. In the applications of the kernel estimators presented here, the criterion to select the bandwidth, h , is the minimizer of the mean integrated square error (MISE): Statistical Methods and Modeling of Seismogenesis - изображение 13where f is the actual (unknown) PDF, is its kernel estimate and E denotes the expected value Starting from - фото 14is its kernel estimate and E [•] denotes the expected value. Starting from MISE, Silverman (1986) derived the simplified score function of the form:

[1.8] where K is the kernel function and Kijko et al 2001 showed that for - фото 15

where K (•) is the kernel function, and Kijko et al 2001 showed that for the normal kernel function 12 the - фото 16Kijko et al . (2001) showed that for the normal kernel function, [1.2], the score function becomes:

[1.9] and the bandwidth that minimizes M 1 h is the root of the equation 110 - фото 17

and the bandwidth that minimizes M 1( h ) is the root of the equation:

[1.10] When the random variable for which the distribution functions are to be - фото 18

When the random variable, for which the distribution functions are to be estimated, X , is defined over a finite or semi-finite interval, or its density is sharply zeroed outside a finite or semi-finite interval, the estimation of the distribution functions is modified according to Silverman (1986). Suppose that either X ∈ [ x *, x *], or the PDF, f X( x ), is not continuous in x *and x *, and f X( x ) = 0 for x < x *and x > x *. To get the kernel estimates of PDF and CDF, the original data sample, { x i}, i = 1,.., n , is mirrored symmetrically around x *and x *resulting in the sample {2 x *− x i, x i, 2 x *− x i}, i = 1,.. n . Based on this sample, a density is estimated and the desired estimates of PDF and CDF are 111 - фото 19is estimated and the desired estimates of PDF and CDF are:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Statistical Methods and Modeling of Seismogenesis»

Представляем Вашему вниманию похожие книги на «Statistical Methods and Modeling of Seismogenesis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Statistical Methods and Modeling of Seismogenesis»

Обсуждение, отзывы о книге «Statistical Methods and Modeling of Seismogenesis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x