Barna Szabó - Finite Element Analysis

Здесь есть возможность читать онлайн «Barna Szabó - Finite Element Analysis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Finite Element Analysis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Finite Element Analysis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Finite Element Analysis <p><b>An updated and comprehensive review of the theoretical foundation of the finite element method</b> <p>The revised and updated second edition of <i>Finite Element Analysis: Method, Verification, and Validation</i> offers a comprehensive review of the theoretical foundations of the finite element method and highlights the fundamentals of solution verification, validation, and uncertainty quantification. Written by noted experts on the topic, the book covers the theoretical fundamentals as well as the algorithmic structure of the finite element method. The text contains numerous examples and helpful exercises that clearly illustrate the techniques and procedures needed for accurate estimation of the quantities of interest. In addition, the authors describe the technical requirements for the formulation and application of design rules. <p>Designed as an accessible resource, the book has a companion website that contains a solutions manual, PowerPoint slides for instructors, and a link to finite element software. This important text: <ul><li>Offers a comprehensive review of the theoretical foundations of the finite element method</li> <li>Puts the focus on the fundamentals of solution verification, validation, and uncertainty quantification</li> <li>Presents the techniques and procedures of quality assurance in numerical solutions of mathematical problems</li> <li>Contains numerous examples and exercises</li></ul> <p>Written for students in mechanical and civil engineering, analysts seeking professional certification, and applied mathematicians, <i>Finite Element Analysis: Method, Verification, and Validation, Second Edition</i> includes the tools, concepts, techniques, and procedures that help with an understanding of finite element analysis.

Finite Element Analysis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Finite Element Analysis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Without a reliable estimate of the size of the numerical error it is not possible to certify design and, furthermore, numerical errors penalize design by lowering the allowable value, as indicated by eq. (1.4). Generally speaking, it is far more economical to ensure that τ is small than to accept the consequences of decreased allowable values.

We distinguish between finite element modeling and numerical simulation. As explained in greater detail in Chapter 5, finite element modeling evolved well before the theoretical basis of numerical simulation was developed. In finite element modeling a numerical problem is formulated by assembling elements from a library of finite elements that contains intuitively constructed beam, plate, shell, solid elements of various description. The numerical problem so created may not correspond to a well defined mathematical problem and therefore a solution may not even exist. For that reason it is not possible to speak of errors of approximation. Nevertheless, finite element modeling is widely practiced with success in some cases but with disappointing results in others. Such practice should be regarded as a practice of art, guided by intuition and experience, rather than a scientific activity. This is because practitioners of finite element modeling have to balance two kinds of very large errors: (a) conceptual errors in the formulation and (b) approximation errors in the numerical solution of an improperly posed mathematical problem.

In numerical simulation, on the other hand, the formulation of mathematical models is treated separately from their numerical solution. A mathematical model should be understood to be a precise statement of an idea of physical reality that permits the prediction of the occurrence, or probability of occurrence, of physical events, given certain data. The intuitive aspects of simulation are confined to the formulation of mathematical models whereas their numerical solution involves the application of well established procedures of applied mathematics. Separation of mathematical models from their numerical solution makes separate treatment of errors associated with the formulation of mathematical models and their numerical approximation possible. Errors associated with the formulation of mathematical models are called model form errors. Errors associated with the numerical solution of mathematical problems are called errors of approximation or errors of discretization. In the early papers and books on the finite element method no such distinction was made.

In this chapter we introduce the finite element method as a method by which the exact solution of a mathematical problem, cast in a generalized form, can be approximated. We also introduce the relevant mathematical concepts, terminology and notation in the simplest possible setting. Generalization of these concepts to two‐ and three‐dimensional problems will be discussed in subsequent chapters.

We first consider the formulation of a second order ordinary differential equation without reference to any physical interpretation. This is to underline that once a mathematical problem was formulated, the approximation process is independent from why the mathematical problem was formulated. This important point is often missed by engineering users of legacy finite element codes because the formulation and approximation of mathematical problems is mixed in finite element libraries.

We show that the exact solution of the generalized formulation is unique. Approximation of the exact solution by the finite element method is described and various discretization strategies are explored. Efficient methods for the computation of QoIs and a posteriori error estimation are described. This chapter serves as a foundation for subsequent chapters.

We would like to assure engineering students who are not yet familiar with the concepts and notation of that branch of applied mathematics on which the finite element method is based that their investment of time and effort to master the contents of this chapter will prove to be highly rewarding.

1.1 An introductory problem

We introduce the finite element method through approximating the exact solution of the following second order ordinary differential equation

(1.5) Finite Element Analysis - изображение 94

with the boundary conditions

(1.6) Finite Element Analysis - изображение 95

where the prime indicates differentiation with respect to x . It is assumed that where α and β are real numbers on - фото 96where α and β are real numbers, картинка 97on картинка 98, картинка 99and картинка 100are defined such that the indicated operations are meaningful on I . For example, the indicated operations would not be meaningful if картинка 101, c or f would not be finite in one or more points on the interval The function f is called a forcing function We seek an approximation to u in - фото 102. The function f is called a forcing function.

We seek an approximation to u in the form:

(1.7) where are fixed functions called basis functions and aj are the coefficients - фото 103

where картинка 104are fixed functions, called basis functions, and aj are the coefficients of the basis functions to be determined. Note that the basis functions satisfy the zero boundary conditions.

Let us find aj such that the integral defined by 18 is minimum While there are other plausible criteria for - фото 105defined by

(1.8) is minimum While there are other plausible criteria for selecting aj we will - фото 106

is minimum. While there are other plausible criteria for selecting aj , we will see that this criterion is fundamentally important in the finite element method. Differentiating with respect to ai and letting the derivative equal to zero we have 19 - фото 107with respect to ai and letting the derivative equal to zero, we have:

(1.9) Using the product rule we write 110 The und - фото 108

Using the product rule: we write 110 The underbraced terms vanish on account of the boundary - фото 109we write

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Finite Element Analysis»

Представляем Вашему вниманию похожие книги на «Finite Element Analysis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Finite Element Analysis»

Обсуждение, отзывы о книге «Finite Element Analysis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x