Mantle Convection and Surface Expressions

Здесь есть возможность читать онлайн «Mantle Convection and Surface Expressions» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Mantle Convection and Surface Expressions: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Mantle Convection and Surface Expressions»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

A multidisciplinary perspective on the dynamic processes occurring in Earth's mantle The convective motion of material in Earth's mantle, powered by heat from the deep interior of our planet, drives plate tectonics at the surface, generating earthquakes and volcanic activity. It shapes our familiar surface landscapes, and also stabilizes the oceans and atmosphere on geologic timescales.
Mantle Convection and Surface Expressions Volume highlights include:
Perspectives from different scientific disciplines with an emphasis on exploring synergies Current state of the mantle, its physical properties, compositional structure, and dynamic evolution Transport of heat and material through the mantle as constrained by geophysical observations, geochemical data and geodynamic model predictions Surface expressions of mantle dynamics and its control on planetary evolution and habitability The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Mantle Convection and Surface Expressions — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Mantle Convection and Surface Expressions», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

204 Wenk, H.‐R., Lonardelli, I., Merkel, S., Miyagi, L., Pehl, J., Speziale, S., & Tommaseo, C. E. (2006). Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry. Journal of Physics Condensed Matter, 18(25). https://doi.org/10.1088/0953‐8984/18/25/S02

205 Wenk, H.‐R., Speziale, S., McNamara, A. K., & Garnero, E. J. (2006). Modeling lower mantle anisotropy development in a subducting slab. Earth and Planetary Science Letters, 245(1–2), 302–314. https://doi.org/10.1016/j.epsl.2006.02.028

206 Wenk, H.‐R., Cottaar, S., Tomé, C. N., McNamara, A., & Romanowicz, B. (2011). Deformation in the lowermost mantle: From polycrystal plasticity to seismic anisotropy. Earth and Planetary Science Letters, 306(1–2), 33–45. https://doi.org/10.1016/J.EPSL.2011.03.021

207 Wenk, H.‐R., Lutterotti, L., Kaercher, P., Kanitpanyacharoen, W., Miyagi, L., & Vasin, R. (2014). Rietveld texture analysis from synchrotron diffraction images. II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffraction, 29(3). https://doi.org/10.1017/S0885715614000360

208 Wookey, J., Kendall, J.‐M., & Barruol, G. (2002). Mid‐mantle deformation inferred from seismic anisotropy. Nature, 415(6873), 777–780. https://doi.org/10.1038/415777a

209 Wu, X., Lin, J. F., Kaercher, P., Mao, Z., Liu, J., Wenk, H. R., & Prakapenka, V. B. (2017). Seismic anisotropy of the D″ layer induced by (001) deformation of post‐perovskite. Nature Communications, 8, 1–6. https://doi.org/10.1038/ncomms14669

210 Xu, J., Yamazaki, D., Katsura, T., Wu, X., Remmert, P., Yurimoto, H., & Chakraborty, S. (2011). Silicon and magnesium diffusion in a single crystal of MgSiO 3 perovskite. Journal of Geophysical Research, 116(B12), B12205. https://doi.org/10.1029/2011JB008444

211 Xu, S. C., Wang, L. D., Zhao, P. T., Li, W. L., Xue, Z. W., & Fei, W. D. (2011). Evolution of texture during hot rolling of aluminum borate whisker‐reinforced 6061 aluminum alloy composite. Materials Science and Engineering: A, 528(7–8), 3243–3248. https://doi.org/10.1016/J.MSEA.2010.12.103

212 Xu, Y., Nishihara, Y., & Karato, S. (2005). Development of a rotational Drickamer apparatus for large‐strain deformation experiments at deep Earth conditions. Advances in High‐Pressure Technology for Geophysical Applications, 167–182. https://doi.org/10.1016/B978‐044451979‐5.50010‐7

213 Yamazaki, D., & Karato, S. I. (2001a). High‐pressure rotational deformation apparatus to 15 GPa. Review of Scientific Instruments, 72(11), 4207–4211. https://doi.org/10.1063/1.1412858

214 Yamazaki, D., & Karato, S. I. (2001b). Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. American Mineralogist, 86(4), 385–391. https://doi.org/10.2138/am‐2001‐0401

215 Yamazaki, D., & Karato, S. I. (2002). Fabric development in (Mg,Fe)O during large strain, shear deformation: Implications for seismic anisotropy in Earth’s lower mantle. Physics of the Earth and Planetary Interiors, 131(3–4), 251–267. https://doi.org/10.1016/S0031‐9201(02)00037‐7

216 Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E., & Toriumi, M. (2000). Silicon self‐diffusion in MgSiO3 perovskite at 25 GPa. Physics of the Earth and Planetary Interiors, 119(3–4), 299–309. https://doi.org/10.1016/S0031‐9201(00)00135‐7

217 Yamazaki, D., Yoshino, T., Ohfuji, H., Ando, J. ichi, & Yoneda, A. (2006). Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on post‐perovskite phase. Earth and Planetary Science Letters, 252(3–4), 372–378. https://doi.org/10.1016/j.epsl.2006.10.004

218 Yoshizawa, Y., Toriyama, M., & Kanzaki, S. (2004). Fabrication of Textured Alumina by High‐Temperature Deformation. Journal of the American Ceramic Society, 84(6), 1392–1394. https://doi.org/10.1111/j.1151‐2916.2001.tb00848.x

219 Zhang, W. L., Gu, M. Y., Wang, D. Z., & Yao, Z. K. (2004). Rolling and annealing textures of a SiCw/Al composite. Materials Letters, 58(27–28), 3414–3418. https://doi.org/10.1016/J.MATLET.2004.05.065

3 Seismic Wave Velocities in Earth’s Mantle from Mineral Elasticity

Johannes Buchen

Seismological Laboratory, California Institute of Technology, Pasadena, CA, USA

ABSTRACT

The propagation of seismic waves through Earth’s mantle is controlled by the elastic properties of the minerals that form mantle rocks. Changes in pressure, temperature, and chemical composition of the mantle as well as phase transitions affect seismic wave speeds through their impact on mineral elasticity. The elastic properties of minerals can be determined in experiments and by first-principle computations and be combined to model the elastic wave speeds of mantle rocks. Based on recent advances, I evaluate the uncertainties on modeled elastic wave speeds and explore their sensitivity to physical and chemical key parameters. I discuss the elastic properties of solid solutions and elastic anomalies that arise from continuous phase transitions, such as spin transitions and ferroelastic phase transitions. Models for rocks of Earth’s lower mantle indicate that continuous phase transitions and Fe‐Mg exchange between major mantle minerals can have significant impacts on elastic wave speeds. When viewed in context with other constraints on the structure and dynamics of the lower mantle, mineral-physical models for the elastic wave speeds of mantle rocks can help to separate thermal from compositional signals in the seismic record and to identify patterns of material transport through Earth's deep interior.

3.1 INTRODUCTION

Seismic waves irradiated from intense earthquakes propagate through Earth’s interior and probe the physical properties of materials that constitute Earth’s mantle. Analyzing travel times and wave forms of seismic signals allows reconstructing the propagation velocities of seismic waves in Earth’s interior. With the fast‐growing body of seismic data and improvements in seismological methods, such reconstructions reveal more and more details about Earth’s deep seismic structure. The propagation velocities of body waves, i.e., compressional ( P ) and shear ( S ) waves, are mainly controlled by the elastic properties of the mantle. The interpretation of seismic observations therefore requires a profound understanding of how pressure, temperature, and chemical composition affect the elastic properties of candidate materials. High‐pressure experiments and quantum‐mechanical calculations have been devised to sample thermodynamic and elastic properties of deep-earth materials by simulating the extreme conditions deep within Earth’s mantle. Their results serve as anchor points for thermodynamic models that allow predicting the elastic properties of mantle rocks for comparison with seismic observations.

The task of assessing the composition of Earth’s interior by comparing seismic velocities with elastic properties of candidate materials was pioneered by Francis Birch (Birch, 1964, 1952). Building on the work of Murnaghan (Murnaghan, 1937), Birch was also among the first to advance finite‐strain theory for describing the elastic properties of materials subjected to strong compressions (Birch, 1947, 1939, 1938). Further extensions and generalizations of finite‐strain formulations (Davies, 1974; Thomsen, 1972a) lead to widespread and successful applications of finite‐strain theory in modeling seismic properties of mantle materials (Bass & Anderson, 1984; Cammarano et al., 2003; Cobden et al., 2009; Davies and Dziewonski, 1975; Duffy & Anderson, 1989; Ita & Stixrude, 1992; Jackson, 1998; Stixrude & Lithgow‐Bertelloni, 2005). Today, compilations of finite‐strain and thermodynamic parameters for mantle minerals and dedicated software tools allow computing phase diagrams for typical rock compositions together with elastic properties (Chust et al., 2017; Connolly, 2005; Holland et al., 2013; Stixrude & Lithgow‐Bertelloni, 2011). Mineral‐physical databases have proven particularly useful in modeling the seismic properties of Earth’s mantle to depths of about 900 km (Cammarano et al., 2009; Cobden et al., 2008; Xu et al., 2008). To some extent, this success reflects current capabilities of high‐pressure experiments as most major minerals of the upper mantle and transition zone can be synthesized and their elastic properties be determined for relevant compositions and at realistic pressures and temperatures, limiting the need for far extrapolations.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Mantle Convection and Surface Expressions»

Представляем Вашему вниманию похожие книги на «Mantle Convection and Surface Expressions» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Mantle Convection and Surface Expressions»

Обсуждение, отзывы о книге «Mantle Convection and Surface Expressions» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x