Fundamentals of Terahertz Devices and Applications

Здесь есть возможность читать онлайн «Fundamentals of Terahertz Devices and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Fundamentals of Terahertz Devices and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Fundamentals of Terahertz Devices and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

An authoritative and comprehensive guide to the devices and applications of Terahertz technology
Fundamentals of Terahertz Devices and Applications

Fundamentals of Terahertz Devices and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Fundamentals of Terahertz Devices and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

6 Chapter 7Figure 7.1 (a) Band structure of graphene and sketch of the possible optical...Figure 7.2 (a) Definition of parameters in a generic structure with N conduc...Figure 7.3 (a) Schematic of the reconfigurable region in a terahertz modulat...Figure 7.4 Experimental results in broadband modulator structures. (a) Trans...Figure 7.5 Structure of an electromagnetic‐cavity integrated graphene electr...Figure 7.6 Experimental results on electromagnetic‐cavity integrated modulat...Figure 7.7 Example work on graphene/metal‐hybrid metamaterial structures so ...Figure 7.8 Summary of results on graphene/meta‐hybrid metamaterials when cha...Figure 7.9 Graphene/metal‐hybrid metamaterials: transmission line equivalent...Figure 7.10 (a) Sketch of the analyzed graphene‐dielectric integrated metasu...Figure 7.11 Two proposed ways in which to alter the sensitivity of terahertz...Figure 7.12 Graphene‐based active terahertz filters. (a) Sketch of the devic...Figure 7.13 Simulated (a) and measured (b) terahertz transmittance versus fr...Figure 7.14 Deep‐subwavelength metamaterial phase modulators. (a) Sketch of ...Figure 7.15 Geometrical trade‐offs in deeply‐scaled metamaterials. The metal...Figure 7.16 (a) Schematic of a MoS 2/metal‐hybrid metamaterial structure. The...Figure 7.17 Experimental result in MoS 2/metal hybrid metamaterials. (a) Meas...Figure 7.18 Ultrafast dynamics in WSe 2thin films. (a) OPTP measurements of ...Figure 7.19 (a) Schematic and (b) optical image of a graphene reflection‐mod...Figure 7.20 Principle of the imaging experiment using graphene‐modulator arr...Figure 7.21 (a) Map of “pixelated illumination” without an object: ΔR i0

7 Chapter 8Figure 8.1 Plasma wave frequencies for different sample geometries. (a) Gate...Figure 8.2 Schematics of a FET as a THz detector (a); and the equivalent cir...Figure 8.3 Schematic representation of the plasma waves in different regimes...Figure 8.4 (a) Detected drain‐source signal as a function of the gate voltag...Figure 8.5 (a) Measured (squares) and calculated 0.2 THz drain response of 2...Figure 8.6 (a) Schematic illustration of FinFET device structure (the drain ...Figure 8.7 (a) 32 × 32 FPA chip complete die micrograph (2.9 × 2.9 mm 2) and ...Figure 8.8 (a) Top‐view illustration of a typical graphene micro‐ribbon arra...Figure 8.9 (a) Room temperature responsivity as a function of the gate bias ...Figure 8.10 (a) Schematics of the encapsulated BLG FET (top) and optical pho...Figure 8.11 (a) BP atoms are arranged in puckered honeycomb layers bounded t...Figure 8.12 Scanning electron microscope (SEM) images of the top‐gated FETs ...Figure 8.13 (a) Plasma velocity in diamond 2DHG as a function of hole effect...Figure 8.14 DC voltage response to the THz voltage of the 0.01 V amplitude a...

8 Chapter 9Figure 9.1 State‐of‐the‐art of frequency multiplier sources at room temperat...Figure 9.2 Frequency multiplier vs comb‐generator.Figure 9.3 Frequency multiplier ideal matching network and optimization.Figure 9.4 JPL 400 GHz four‐anode doubler with substrate‐less technology (de...Figure 9.5 LERMA‐C2N demonstration model of the 600 GHz two‐anode balanced d...Figure 9.6 Currents and electrical fields in the vicinity of the diodes of a...Figure 9.7 Schematics of a sub‐millimeter wave frequency tripler using an an...Figure 9.8 Picture of a four‐anode 900 GHz balanced tripler (designed by A. ...Figure 9.9 Detail of the diode area of a the balanced 1.5 THz tripler with a...Figure 9.10 Currents and electrical fields in the vicinity of the diodes of ...Figure 9.11 DC capacitance Vs voltage (a) and DC resistance Vs. Voltage (b) ...Figure 9.12 GaAs electron mobility and resistivity as a function of the elec...Figure 9.13 Theoretical DC breakdown voltage as a function of the epilayer d...Figure 9.14 GaAs electron mobility as a function of the ambient temperature ...Figure 9.15 Variation of the space charge region for different frequencies o...Figure 9.16 Charge density within the epilayer for different operation condi...Figure 9.17 (a) Definition of the HFSS wave‐port at the exact location of th...Figure 9.18 Optimization of the diodes‐cell of a four‐anode frequency triple...Figure 9.19 JPL 1500 GHz doubler with JPL frame‐less membrane technology (de...Figure 9.20 JPL flight model of the 1.7–1.9 THz local oscillator chain for H...Figure 9.21 (a) Last stage frequency tripler used for the 1.6–1.7 and 1.7–1....Figure 9.22 (a) Detail of the diode area of the Herschel 1.9 THz frequency t...Figure 9.23 JPL 1.8–2.1 THz multiplier sources at room temperature measured ...Figure 9.24 SEM image of the 2.7 THz balanced frequency tripler chip mounted...Figure 9.25 State‐of‐the‐art of 2.5–2.7 THz solid‐state sources at room temp...Figure 9.26 Schematics of JPL 1.6 THz high power multiplier chain and test s...Figure 9.27 Picture of JPL 1.6 THz high power multiplier chain.Figure 9.28 Picture of JPL 1.6 THz frequency tripler. This Frequency tripler...Figure 9.29 Performance of JPL 1.6 THz frequency tripler. RF performance in ...Figure 9.30 Close‐up vertical view of the power‐combined 260–340 GHz frequen...Figure 9.31 Quad‐chip 260–340 GHz tripler designed by John Ward at Jet Propu...Figure 9.32 Picture of the bottom half of the power‐combined 900 GHz frequen...Figure 9.33 Schematics of an in‐phase power‐combined balanced frequency doub...Figure 9.34 Detail of the demonstration model of the 300 GHz frequency doubl...Figure 9.35 Photograph of a dual‐symmetry 190 GHz balanced frequency doubler...Figure 9.36 Dual symmetry 190 GHz balanced frequency doubler using UMS Schot...Figure 9.37 Dual symmetry 190 GHz balanced frequency doubler using UMS Schot...Figure 9.38 Detail of JPL on‐chip in‐phase power combined 490–560 GHz freque...Figure 9.39 Performance of JPL 490–560 GHz frequency tripler. Two PAs module...Figure 9.40 Detail of JPL on‐chip in‐phase power combined 550 GHz single inp...Figure 9.41 Schematics of JPL on‐chip in‐phase power combined 550 GHz quad‐c...Figure 9.42 Photograph of JPL high power 165–195 GHz frequency doubler featu...Figure 9.43 Photograph of JPL high power 165–195 GHz module featuring four W...

9 Chapter 10Figure 10.1 I–V and C–V characteristics of an ideal Schottky contact.Figure 10.2 Harmonic generation from nonlinear Q–V.Figure 10.3 The dependence of multiplication efficiency on f 0/ f c.Figure 10.4 C–V characteristics of a diode with φ = 0.85 V, Fundamentals of Terahertz Devices and Applications - изображение 2.Figure 10.5 Doubler input and output power using the diode characteristics i...Figure 10.6 The dependence of input power and efficiency on φ .Figure 10.7 The dependence of input power and efficiency on картинка 3.Figure 10.8 Schematic for determining series resistance.Figure 10.9 Evaluated resistance of GaN diode versus diode anode size.Figure 10.10 Flowchart of semiconductor device numerical simulation.Figure 10.11 GaN low field mobility.Figure 10.12 GaN electron velocity.Figure 10.13 (a) Schematic of epi‐structure used in simulation (b) an exampl...Figure 10.14 Simulated ionization integral and electric field vs. bias volta...Figure 10.15 Simulated I–V characteristics.Figure 10.16 Series resistance extracted from forward IV curves in Figure 10...Figure 10.17 Simulated capacitance–voltage characteristics.Figure 10.18 Transient V ( t ), I ( t ) characteristics.Figure 10.19 Transient P ( t ) characteristics corresponds to Figure 10.18.Figure 10.20 Power and nonlinear performance of 300 nm thick N −layer ...Figure 10.21 Power and nonlinear performance of 1 × 10 17cm −3doped N −...Figure 10.22 Power and nonlinear performance of 1 × 10 17cm −3doped 30...Figure 10.23 Power and nonlinear performance of 1 × 10 17cm −3doped 30...Figure 10.24 SEM images of etched mesa by (a) Ar sputtering only in RIE and ...Figure 10.25 IV characteristics of Ni/GaN Schottky contact in forward region...Figure 10.26 Devices realized in this study.Figure 10.27 I–V characteristics of diodes with various diameter.Figure 10.28 Simulated current density contour of a diode.Figure 10.29 Cross section of GaN Schottky diode and the corresponding equiv...Figure 10.30 De‐embedding structures and the corresponding equivalent circui...Figure 10.31 Extracted C Y 12from both as‐measured and de‐embedded Y ‐paramet...Figure 10.32 Extracted C Y 12versus bias voltage.Figure 10.33 Flow chart of EC modeling based on small‐signal S‐parameters.Figure 10.34 Extracted intrinsic parameters of diodes diameter from 2.5 to 1...Figure 10.35 Calculated cutoff frequency from extracted C jand R s.Figure 10.36 Simplified block schematic of sampler‐based LSNA.Figure 10.37 Configuration of measurement with 50 Ω.Figure 10.38 (a) Typical time‐domain waveform in I–V plot; (b) Q–V relation ...Figure 10.39 Derived instant Capacitance–Voltage relationship (solid lines),...Figure 10.40 Power handling capability for (a) 300 nm thick N −layer (...Figure 10.41 Large‐signal diode model schematic for GaN Schottky diodes.Figure 10.42 P out(dBm) versus P absorbed(dBm). Symbols with solid lines:...Figure 10.43 Flow chart of large‐signal modeling for GaN Schottky diodes.Figure 10.44 Block diagram of a single diode frequency doubler.Figure 10.45 Schematic of large‐signal model of the 10 μm diode.Figure 10.46 S 21of the diode and with the presence of stubs.Figure 10.47 Schematic of circuit setup used for combining harmonic balance ...Figure 10.48 Simulated results of the 10 μm diode biased at −10 V, input pow...Figure 10.49 First ( j 1) and third ( j 3) harmonic amplitudes of the current os...Figure 10.50 Performance comparison between the state‐of‐the‐art measured ef...Figure 10.51 Current noise spectral density of single diodes in GaN‐ and GaA...Figure 10.52 (a) Forward I–V and fitting with TE in the low voltage range; (...

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Fundamentals of Terahertz Devices and Applications»

Представляем Вашему вниманию похожие книги на «Fundamentals of Terahertz Devices and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Fundamentals of Terahertz Devices and Applications»

Обсуждение, отзывы о книге «Fundamentals of Terahertz Devices and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x