Machine Learning Algorithms and Applications

Здесь есть возможность читать онлайн «Machine Learning Algorithms and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning Algorithms and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning Algorithms and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Machine Learning Algorithms  The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.

Machine Learning Algorithms and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning Algorithms and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Figure 1.12shows the predicted values of O3 for Anand Vihar, New Delhi in December, 2017, and decline in O3 levels can be observed. Figure 1.13shows the predicted values of PM10 for Sector 62, Noida in June, 2020, and decline in levels could be observed.

The quality of air as shown in Figure 1.14could also be observed/predicted for the major cities of India. This helped the user to study the quality of air throughout the country. The figure shows the quality of air as severe (magenta), very poor (yellow), poor (cyan), moderate (red), satisfactory (green), and good as blue dot on the map. It was realized that smaller cities, towns, and villages in India have good air quality. It is only the Metropolitan cities and the areas surrounding these cities that suffer from worst air quality.

From our project, we had some major findings. It was found that the values of different parameters of air depend on the latest past records (few days to a month) and not on many previous months. While retrieving real-time values through API for different parameters, sometimes, null or zero values occur. This might be due to malfunctioning of the sensors or inappropriate weather conditions. Zero or very less values might also occur at night because of the fact that certain parameters like O3 mix with other chemical compounds to form other compounds and consequently their value reduces. No2 and SO2 are also sometimes interacting and hence their abrupt values. The raw data is much easier to understand through visualizations for a common man. Also, lockdown is expected to be the effective alternative measure to be implemented for controlling air pollution.

Figure 13 Screenshot of fetched data Table 12 Precision recall and - фото 4

Figure 1.3 Screenshot of fetched data.

Table 1.2 Precision, recall, and F1-score.

Classes Precision Recall F1-Score
Moderate 1.0 0.99 0.99
Poor 1.0 0.95 0.97
Satisfactory 0.98 1.0 0.99
Severe 1.0 1.0 1.0
Very Poor 1.0 1.0 1.0
Avg/total 0.99 0.99 0.99
Final Accuracy: 0.9893

Table 1.3 MAE and RMSE scores for different epochs.

Test MAE for 1 8.864
Test RMSE for 1 12.122
Test MAE for 2 17.996
Test RMSE for 2 35.390
Test MAE for 3 23.820
Test RMSE for 3 35.938
Test MAE for 4 6.021
Test RMSE for 4 9.269
Figure 14 Predicted values in Bengaluru in December 2017 Figure 15 - фото 5

Figure 1.4 Predicted values in Bengaluru in December, 2017.

Figure 15 Predicted values in Bengaluru in June 2020 Figure 16 Predicted - фото 6

Figure 1.5 Predicted values in Bengaluru in June, 2020.

Figure 16 Predicted values in New Delhi in December 2017 Figure 17 - фото 7

Figure 1.6 Predicted values in New Delhi in December, 2017.

Figure 17 Predicted values in New Delhi in June 2020 Table 14 MAE scores - фото 8

Figure 1.7 Predicted values in New Delhi in June, 2020.

Table 1.4 MAE scores for LSTM hyper parameters.

Batch size Epochs NO2 O3 PM10 PM2.5 SO2
10 10 22 52 142 64 14
24 100 17 22 142 52 13
15 100 13 19 139 51 13
8 10 16.8 25.4 124 44.8 13
6 10 13 25 119.7 44 13
Figure 18 Heat map for ozone O 3for day and night in December 2017 Figure - фото 9

Figure 1.8 Heat map for ozone O 3for day and night in December, 2017.

Figure 19 Heat map for ozone O 3for day and night in June 2020 Figure 110 - фото 10

Figure 1.9 Heat map for ozone O 3for day and night in June, 2020.

Figure 110 Heat map for all parameters for 3 days and nights in December - фото 11

Figure 1.10 Heat map for all parameters for 3 days and nights in December, 2017.

Figure 111 Heat map for all parameters for 3 days and nights in June 2020 - фото 12

Figure 1.11 Heat map for all parameters for 3 days and nights in June, 2020.

Figure 112 Predicted values for O 3for Anand Vihar New Delhi Figure 113 - фото 13

Figure 1.12 Predicted values for O 3for Anand Vihar, New Delhi.

Figure 113 Predicted values for PM 10for Sector 62 Noida Figure 114 - фото 14

Figure 1.13 Predicted values for PM 10for Sector 62, Noida.

Figure 114 Pollution levels in major Indian cities 15 Conclusion After - фото 15

Figure 1.14 Pollution levels in major Indian cities.

1.5 Conclusion

After applying K-means clustering using Silhouette coefficient, the data is divided into seven clusters. The SVM is successfully able to classify the data into its respective air quality class with accuracy of 99%. The LSTM models for different places have been tuned accordingly to minimize MAE and RMSE. The proposed model could be used for various purposes like predicting future trends of air quality, assessing past trends of air quality, visualizing data in an effective way, issuing health advisory, and providing health effects (if any) based on the current air quality. Various parameters can be compared and it could be determined which pollutant is affecting more in a particular area and accordingly actions could be taken beforehand. Anyone could get inference from the data easily which is tough to analyze numerically and could take certain actions to control air pollution in any area.

References

1. IHME and HEI State of Global Air/2017, A special report on global exposure to air pollution and its disease burden. State of Global Air, vol. 1, 1–17, 2017.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning Algorithms and Applications»

Представляем Вашему вниманию похожие книги на «Machine Learning Algorithms and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning Algorithms and Applications»

Обсуждение, отзывы о книге «Machine Learning Algorithms and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x