Vinnie Bansal - Machine Learning with Dynamics 365 and Power Platform

Здесь есть возможность читать онлайн «Vinnie Bansal - Machine Learning with Dynamics 365 and Power Platform» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning with Dynamics 365 and Power Platform: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning with Dynamics 365 and Power Platform»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Apply cutting-edge AI techniques to your Dynamics 365 environment to create new solutions to old business problems  In 
, an accomplished team of digital and data analytics experts delivers a practical and comprehensive discussion of how to integrate AI Builder with Dataverse and Dynamics 365 to create real-world business solutions. It also walks you through how to build powerful machine learning models using Azure Data Lake, Databricks, Azure Synapse Analytics. 
The book is filled with clear explanations, visualizations, and working examples that get you up and running in your development of supervised, unsupervised, and reinforcement learning techniques using Microsoft machine learning tools and technologies. These strategies will transform your business verticals, reducing costs and manual processes in finance and operations, retail, telecommunications, and manufacturing industries. 
The authors demonstrate: 
What machine learning is all about and how it can be applied to your organization’s Dynamics 365 and Power Platform Projects The creation and management of environments for development, testing, and production of a machine learning project How adopting machine learning techniques will redefine the future of your ERP/CRM system Perfect for Technical Consultants, software developers, and solution architects, 
 is also an indispensable guide for Chief Technology Officers seeking an intuitive resource for how to implement machine learning in modern business applications to solve real-world problems.

Machine Learning with Dynamics 365 and Power Platform — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning with Dynamics 365 and Power Platform», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Table of Contents

1 Cover

2 Title Page Machine Learning with Dynamics 365 and Power Platform The Ultimate Guide to Apply Predictive Analytics AURELIEN CLERE VINNIE BANSAL

3 Copyright

4 Foreword

5 Preface WHY DID WE WRITE THIS BOOK? WHAT WAS THE INSPIRATION BEHIND THIS SUBJECT?

6 Acknowledgments

7 About the Authors

8 CHAPTER 1: Dynamics 365, Power Platform, and Machine LearningINTRODUCTION TO DYNAMICS 365 INTRODUCTION TO POWER PLATFORM WHAT IS MACHINE LEARNING: HOW HAS IT EVOLVED? DEFINITION OF MACHINE LEARNING

9 CHAPTER 2: Artificial Intelligence and Pre‐Built Machine Learning in Dynamics 365AZURE AI PLATFORM AZURE MACHINE LEARNING SERVICE KNOWLEDGE MINING

10 CHAPTER 3: ML/AI Features and Their Applications in Dynamics 365 VIRTUAL AGENT FOR CUSTOMER SERVICE IN DYNAMICS 365 ARTIFICIAL INTELLIGENCE IN POWER APPS WITH AI BUILDER WHAT IS MIXED REALITY?

11 CHAPTER 4: Dynamics 365 and Custom ML Models Using Azure ML

12 CHAPTER 5: Deep Dive in Machine Learning Custom Models

13 Chapter 6: Machine Learning with Dynamics 365 Use Cases ML FOR FINANCE DEMAND FORECASTING CONNECTED STORE ML FOR HUMAN RESOURCES MANAGEMENT MACHINE LEARNING AT THE WORKPLACE

14 Afterword

15 Index

16 End User License Agreement

List of Tables

1 Chapter 4TABLE 4.1 Data guardrails.

List of Illustrations

1 Chapter 1 FIGURE 1.1 Understanding the three tools of the Power Platform. FIGURE 1.2 Evolution of machine learning. FIGURE 1.3 Machine learning lifecycle. FIGURE 1.4 Data preparation process. FIGURE 1.5 Machine learning algorithms.

2 Chapter 2FIGURE 2.1 Azure Cognitive Services.FIGURE 2.2 Types of vision APIs.FIGURE 2.3 Types of speech APIs.FIGURE 2.4 Speech services.FIGURE 2.5 Language services.FIGURE 2.6 Knowledge services.FIGURE 2.7 Bot building stages.FIGURE 2.8 Three phases of knowledge mining.

3 Chapter 3FIGURE 3.1 Artificial intelligence capabilities within Customer Insights.FIGURE 3.2 Five elements of the card.FIGURE 3.3 Timeline of Dynamics 365 Sales.FIGURE 3.4 Untracked email with tracking link on right.FIGURE 3.5 How Power Apps can help organizations.FIGURE 3.6 Mixed Reality component.

4 Chapter 4FIGURE 4.1 Select dataset.FIGURE 4.2 Upload your data file.FIGURE 4.3 Configure run.FIGURE 4.4 Select task and settings.FIGURE 4.5 Additional configurations.FIGURE 4.6 Pipeline.

5 Chapter 6FIGURE 6.1 Automatic receipt recognition.

Guide

1 Cover Page

2 Table of Contents

3 Title Page Machine Learning with Dynamics 365 and Power Platform The Ultimate Guide to Apply Predictive Analytics AURELIEN CLERE VINNIE BANSAL

4 Copyright

5 Foreword

6 Preface

7 Acknowledgments

8 About the Authors

9 Begin Reading

10 Afterword

11 Index

12 End User License Agreement

Pages

1 iii

2 iv

3 vii

4 viii

5 ix

6 x

7 xi

8 xii

9 xiii

10 xiv

11 1

12 2

13 3

14 4

15 5

16 6

17 7

18 8

19 9

20 10

21 11

22 12

23 13

24 14

25 15

26 16

27 17

28 18

29 19

30 20

31 21

32 22

33 23

34 24

35 25

36 26

37 27

38 28

39 29

40 30

41 31

42 33

43 34

44 35

45 36

46 37

47 38

48 39

49 40

50 41

51 42

52 43

53 44

54 45

55 46

56 47

57 48

58 49

59 50

60 51

61 52

62 53

63 54

64 55

65 56

66 57

67 58

68 59

69 60

70 61

71 62

72 63

73 64

74 65

75 66

76 67

77 68

78 69

79 70

80 71

81 72

82 73

83 74

84 75

85 76

86 77

87 78

88 79

89 80

90 81

91 82

92 83

93 84

94 85

95 86

96 87

97 88

98 89

99 90

100 91

101 92

102 93

103 94

104 95

105 96

106 97

107 98

108 99

109 100

110 101

111 102

112 103

113 104

114 105

115 106

116 107

117 108

118 109

119 110

120 111

121 112

122 113

123 114

124 115

125 116

126 117

127 118

128 119

129 120

130 121

131 122

132 123

133 124

134 125

135 126

136 127

137 128

138 129

139 130

140 131

141 132

142 133

143 134

144 135

145 136

146 137

147 138

148 139

149 140

150 141

151 142

152 143

153 144

154 145

155 146

156 147

157 148

158 149

159 150

160 151

161 152

162 153

163 154

164 155

165 156

166 157

167 158

168 159

169 161

170 162

171 163

172 164

173 165

174 166

175 167

176 168

177 169

178 170

179 171

180 172

181 173

182 174

183 175

184 176

185 177

186 178

187 179

188 180

189 181

190 182

191 183

192 184

193 185

194 186

195 187

196 188

197 189

198 190

199 191

200 192

201 193

202 194

203 195

204 196

205 197

206 198

207 199

208 200

209 201

210 202

211 203

212 205

213 206

214 207

215 208

216 209

217 210

218 211

219 212

220 213

221 214

222 215

223 216

224 217

225 218

226 219

227 220

228 221

229 222

230 223

231 224

232 225

233 226

Machine Learning with Dynamics 365 and Power Platform

The Ultimate Guide to Apply Predictive Analytics

AURELIEN CLERE

VINNIE BANSAL

Machine Learning with Dynamics 365 and Power Platform - изображение 1

Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per‐copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750‐8400, fax (978) 750‐4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201) 748‐6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representations or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning with Dynamics 365 and Power Platform»

Представляем Вашему вниманию похожие книги на «Machine Learning with Dynamics 365 and Power Platform» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning with Dynamics 365 and Power Platform»

Обсуждение, отзывы о книге «Machine Learning with Dynamics 365 and Power Platform» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x