Machine Learning Algorithms and Applications

Здесь есть возможность читать онлайн «Machine Learning Algorithms and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Machine Learning Algorithms and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Machine Learning Algorithms and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Machine Learning Algorithms  The book discusses many methods based in different fields, including statistics, pattern recognition, neural networks, artificial intelligence, sentiment analysis, control, and data mining, in order to present a unified treatment of machine learning problems and solutions. All learning algorithms are explained so that the user can easily move from the equations in the book to a computer program.

Machine Learning Algorithms and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Machine Learning Algorithms and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 26 Result of egg location CNN model Table 23 Specification of egg - фото 31

Figure 2.6 Result of egg location CNN model.

Table 2.3 Specification of egg class predicator CNN model.

Input image Activation/output Training samples Test samples Validation samples Test loss Accuracy on the test set Accuracy on the validation set
32 × 32 SoftMax 2 class-(0/1) 2.4 × 10 6 80.2 × 10 3 30 × 10 3 0.0077 99.8115% 99.7981%

The overall result of egg classification and counting yields an accuracy greater than 97%, and Figure 2.7represents the result generated using the proposed method where green dots represent the hatched eggs while red dots represent unhatched eggs. Some of the areas of the images are zoomed and shown separately in Figure 2.7since the input image is too big to fit in the page and eggs are minuscule to see any features.

Figure 27 Result of egg classification generated by the proposed method 24 - фото 32

Figure 2.7 Result of egg classification generated by the proposed method.

2.4 Dataset Generation

In comparison with the conventional method of extracting egg count information using digital images that hardly require any training data, the proposed method that employs the CNN technique required large datasets to learn the features automatically to provide the required results. The CNN method uses plenty of training data along with test and validation datasets as the number of hidden layers increases.

There are many datasets available for free that can be downloaded to train our own CNN models to classify handwritten digits, identify objects, and many more. But there is no single public dataset available corresponding with the sericulture field especially silkworm egg counting or classification. So, in our work, training datasets were generated by cropping class images from the silkworm egg sheet and providing class labels and other features that are necessary for CNN training such as egg center location. Over 400K image set was generated for egg location and FB class and over 100K image set for individual classes (HC and UHC). Also, data augmentation is implemented to increase the datasets.

2.5 Results

The trained CNN models were tested with new silkworm egg sheets that were scanned using a Canon ®paper scanner at 600 dpi, to classify and count the number of eggs. These digital datasets were completely isolated from the training step; thereby, the trained CNN models had to predict the results than providing learned results. Table 2.4represents the performance of the overall CNN model trained using our datasets. The performance of a few datasets is shown due to space restriction. It can be observed that CNN models trained with two hidden layers perform superior to the conventional techniques by providing accuracy of over 97%. The accuracy shown in Table 2.4is the accuracy of the number of eggs counted and accuracy in classifying the eggs. The model consistently outperforms the conventional computer vision/image processing technique of silkworm counting and classification with accuracy over 97% for newer data of the same breed. The inference time shown in Table 2.4was performed on an Nvidia GPU (GTX 1060).

The model performance drops to newer egg data that are completely different in color and texture, which were not available in the training dataset. This happens due to the nature of different breed eggs that are spatially different from the trained model. Collecting and training a deep learning model to a different breed of silkworm eggs will resolve these issues, which is under action.

Table 2.4 Performance of the CNN model results on test datasets.

Test sample True count Count prediction Time (sec) Class scores Accuracy (%)
HC UHC
MSR1_001.jpg 588 586 11.83 437 149 99.65
MSR1_002.jpg 534 526 8.99 473 53 98.68
MSR1_003.jpg 554 556 10.42 491 65 99.28
MSR1_004.jpg 539 528 9.81 501 27 97.95
MSR1_005.jpg 597 588 11.14 562 26 98.32

2.6 Conclusion

In this paper, CNN-based silkworm egg counting and classification model that overcomes many issues found with conventional image processing techniques is explained. The main contribution of this paper is in fourfolds. First, a method to generalize the method of capturing silkworm egg sheet data in a digital format using normal paper scanners rather than designing extra hardware, which eliminates the need for additional light sources to provide uniform illumination while recording data and maintain high repeatability.

Second, the scanned digital data can be transformed into standard size by using key markers stamped onto the egg sheets before scanning. This allows the user to resize the dimension of digital data and later use it in an image processing algorithm or CNN without introducing dimensionality error.

A dataset has been put together containing over 400K images representing different features of silkworm eggs. The CNN and other models that need a lot of training, testing and validation data can easily use this dataset to skip the data generation phase which is the third contribution.

Fourth, a CNN model has been trained using the dataset that is designed to predict the egg class and count the number of eggs per egg sheet. With over 97% accuracy the model outperforms many conventional approaches with only 4 hidden layers and a fully connected layer.

The model performs accurately in quantifying (counting) different breed silkworm eggs, but new datasets become necessary to predict the class labels for new silkworm breed for which the model is not trained. This is because HC class eggs have high pixel intensity throughout the egg surface while UHC has dark pixels at the center surrounded with high-value pixels for the egg breed used on our experiment. This color feature may not be the same as other breed silkworm eggs, and hence, additional data becomes important that can be fed into already trained CNN using transfer learning. Also, the egg location model performs well with new breed data, the training dataset to determining the class of eggs can be easily generated with minimal human effort.

Acknowledgment

The authors would like to thank Smt. R. Latha S-B and Mr. P. B. Vijayakumar S-C of KSSRDI, KA, IN for providing silkworm egg sheets for this study.

References

1. Xue, Y. and Ray, N., Cell Detection in Microscopy Images with Deep Convolutional Neural Network and Compressed Sensing, CoRR , abs/1708.03307, arXiv preprint arXiv:1708.03307 , 2017.

2. Zieliński, B., Plichta, A., Misztal, K., Spurek, P., Brzychczy-Włoch, M., Ochońska, D., Deep learning approach to bacterial colony classification. PLoS One , 12, 9, e0184554, 2017.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Machine Learning Algorithms and Applications»

Представляем Вашему вниманию похожие книги на «Machine Learning Algorithms and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Machine Learning Algorithms and Applications»

Обсуждение, отзывы о книге «Machine Learning Algorithms and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x