Gene Cheung - Graph Spectral Image Processing

Здесь есть возможность читать онлайн «Gene Cheung - Graph Spectral Image Processing» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Graph Spectral Image Processing: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Graph Spectral Image Processing»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing – extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels – provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements.<br /><br />The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.

Graph Spectral Image Processing — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Graph Spectral Image Processing», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The approximated version of h ( L) xby the K th order shifted Chebyshev polynomial, h Cheb( L) x, is given by Shuman et al . (2013); Hammond et al. (2011)

[1.60] and it has the recurrence property 161 with - фото 131

and it has the recurrence property:

[1.61] with The k th Chebyshev coefficient c kis defined as 162 - фото 132

with The k th Chebyshev coefficient c kis defined as 162 for k 0 K - фото 133. The k th Chebyshev coefficient c kis defined as

[1.62] for k 0 K where P is the number of sampling points used to compute the - фото 134

for k = 0 ,...,K , where P is the number of sampling points used to compute the Chebyshev coefficients and is usually set to P = K + 1. The approximated filter in equation [1.60]is clearly a K th order polynomial of λ . As a result, it is K- hop localized in the vertex domain, as previously mentioned (Shuman et al. 2011; Hammond et al. 2011).

The approximation error for the Chebyshev polynomial has been well studied in the context of numerical computation (Vetterli et al. 2014; Phillips 2003):

THEOREM 1.1.– Let K be the polynomial degree of the Chebyshev polynomial and assume that has K 1 continuous derivatives on 1 1 In this case the upper bound - фото 135has ( K + 1) continuous derivatives on [−1, 1]. In this case, the upper bound of the error is given as follows:

[1.63] 166 Krylov subspace method The Krylov subspace of an arbitrary square - фото 136

1.6.6. Krylov subspace method

The Krylov subspace Graph Spectral Image Processing - изображение 137of an arbitrary square matrix Graph Spectral Image Processing - изображение 138and a vector xis defined as follows:

[1.64] The Krylov subspace method in terms of GSP refers to filtering ie - фото 139

The Krylov subspace method, in terms of GSP, refers to filtering, i.e. evaluating an arbitrary filtered response h ( W) x, realized in a Krylov subspace картинка 140. Many methods to evaluate h ( W) xin a Krylov subspace have been proposed, mainly in computational linear algebra and numerical computation (Golub and Van Loan 1996). A famous approximation method is the Arnoldi approximation, which is given by

[1.65] where h H K is evaluating h for the upper Heisenberg matrix H K which - фото 141

where h ( H K) is evaluating h (·) for the upper Heisenberg matrix H K, which is obtained by using the Arnoldi process. Furthermore, H Kis expected to be much smaller than the original matrix; therefore, evaluating h ( H K) using full eigendecomposition will be feasible and light-weighted.

1.7. Conclusion

This chapter introduces the filtering of graph signals performed in the graph frequency domain. This is a key ingredient of graph spectral image processing presented in the following chapters. The design methods of efficient and fast graph filters and filter banks, along with fast GFT (such attempts can be found in Girault et al . (2018); Lu and Ortega (2019)), are still a vibrant area of GSP: the chosen graph filters directly affect the quality of processed images. This chapter only provided a brief overview of graph spectral filtering. Please refer to the references for more details.

1.8. References

Anderson Jr. W.N. and Morley, T.D. (1985). Eigenvalues of the Laplacian of a graph. Linear and Multilinear Algebra , 18(2), 141–145.

Barash, D. (2002). Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Trans. Pattern Anal. Mach. Intell. , 24(6), 844–847.

Chang, C.-L. and Girod, B. (2007). Direction-adaptive discrete wavelet transform for image compression. IEEE Trans. Image Process. , 16(5), 1289–1302.

Choudhury, P. and Tumblin, J. (2003). The trilateral filter for high contrast images and meshes. Eurographics Rendering Symposium , 186–196.

Desbrun, M., Meyer, M., Schröder, P., Barr, A.H. (1999). Implicit fairing of irregular meshes using diffusion and curvature flow. Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques , 317–324.

Ding, W., Wu, F., Wu, X., Li, S., Li, H. (2007). Adaptive directional lifting-based wavelet transform for image coding. IEEE Trans. Image Process , 16(2), 416–427.

Durand, F. and Dorsey, J. (2002). Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics (TOG) , 21, 257–266.

Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R. (2008). Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics (TOG) , 27, 67.

Fleishman, S., Drori, I., Cohen-Or, D. (2003). Bilateral mesh denoising. ACM Transactions on Graphics (TOG) , 22, 950–953.

Gadde, A., Narang, S.K., Ortega, A. (2013). Bilateral filter: Graph spectral interpretation and extensions. IEEE International Conference on Image Processing , 1222–1226.

Girault, B., Ortega, A., Narayanan, S. (2018). Irregularity-aware graph Fourier transforms. IEEE Transactions on Signal Processing , 66(21), 5746–5761.

Golub, G.H. and Van Loan, C.F. (1996). Matrix Computations , Johns Hopkins University Press, Maryland.

Hammond, D.K., Vandergheynst, P., Gribonval, R. (2011). Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis , 30(2), 129–150.

Harel, J., Koch, C., Perona, P. (2006). Graph-based visual saliency. Proceedings of the 19th International Conference on Neural Information Processing Systems , 545–552.

He, K., Sun, J., Tang, X. (2013). Guided image filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence , 35(6), 1397–1409.

Hu, W., Cheung, G., Ortega, A., Au, O.C. (2015). Multiresolution graph Fourier transform for compression of piecewise smooth images. IEEE Transactions on Image Processing , 24(1), 419–433.

Itti, L., Koch, C., Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. , 20(11), 1254–1259.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Graph Spectral Image Processing»

Представляем Вашему вниманию похожие книги на «Graph Spectral Image Processing» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Graph Spectral Image Processing»

Обсуждение, отзывы о книге «Graph Spectral Image Processing» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x