Gene Cheung - Graph Spectral Image Processing

Здесь есть возможность читать онлайн «Gene Cheung - Graph Spectral Image Processing» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Graph Spectral Image Processing: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Graph Spectral Image Processing»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing – extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels – provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements.<br /><br />The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.

Graph Spectral Image Processing — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Graph Spectral Image Processing», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where y:= D 1/2 yand the graph spectral filter is defined as Graph Spectral Image Processing - изображение 74Moreover, картинка 75for the symmetric normalized graph Laplacian; therefore, it acts as a linear decay low-pass filter in the graph frequency domain.

This graph spectral representation of a pixel-dependent filter suggests that the pixel-dependent filter W implicitly and simultaneously designs the underlying graph (and therefore, the GFT basis) and the spectral response of the graph filter . In other words, the GSP expression of the pixel-dependent filter is free to design the spectral response apart from the linear decay one once we determine W For example let us - фото 76, apart from the linear decay one, once we determine W. For example, let us consider the following spectral response:

[1.33] where is an arbitrary graph highpass filter and η 0 is a parameter In this - фото 77

where картинка 78is an arbitrary graph high-pass filter and η > 0 is a parameter. In this case, картинка 79works as a graph low-pass filter and its spectral shape is controlled by In fact Gadde et al 2013 show that equation 133is the optimal solution - фото 80In fact, Gadde et al . (2013) show that equation [1.33]is the optimal solution for the following signal restoration problem:

[1.34] where z x nwith additive noise nand Image filtering sometimes needs - фото 81

where z= x+ nwith additive noise nand Image filtering sometimes needs numerous iterations to smooth out the - фото 82.

Image filtering sometimes needs numerous iterations to smooth out the details, in case of textured and/or noisy images. Therefore, to boost up the smoothing effect, the trilateral filter method (Choudhury and Tumblin 2003) first smooths the gradients of the image, and subsequently, the smoothed gradient is utilized to smooth the intensities. Its counterpart in the graph spectral domain is also proposed in Onuki et al. (2016) with the parameter optimization method for ρ in equation [1.33], which minimizes MSE after denoising it.

Figure 13 Image denoising example using bilateral filters From left to - фото 83

Figure 1.3. Image denoising example using bilateral filters. From left to right: Original, noisy (PSNR: 20.02 dB), bilateral filter in the pixel domain (PSNR: 26.23 dB), and bilateral filter in the graph frequency domain (PSNR: 27.14 dB). Both bilateral filters use the same parameters

Figure 1.3depicts an example of image denoising by the bilateral filter in the graph frequency domain (Gadde et al . 2013). The image is degraded by additive white Gaussian noise. The bilateral filter in the graph frequency domain uses the spectral filter parameterized in equation [1.33], with ĥ HPF= λ and η = 5. It is clear that the graph spectral version efficiently removes noise while preserving image edges.

1.5. Multiple graph filters: graph filter banks

In the previous sections, we only considered the case where a single graph spectral filter was applied. Several image processing applications, such as compression and restoration, often require multiple filters that have different passbands (typically low-pass and high-pass). This signal processing system – so-called filter banks – is also important for GSP. In this section, the spectral domain design of graph filter banks is briefly introduced.

Figure 14 Framework of graph filter bank 151 Framework A typical - фото 84

Figure 1.4. Framework of graph filter bank

1.5.1. Framework

A typical framework of a graph filter bank is illustrated in Figure 1.4. The analysis transform decomposes the input signal into some graph frequency components using a set of graph filters { h k( L)} ( k = 0,..., M − 1). We assume that the graph operator is a graph Laplacian L; however, in general, any graph operator can be applied. The decomposed coefficients (called transformed coefficients ) are often downsampled by the sampling matrix Graph Spectral Image Processing - изображение 85, where M kis the sampling ratio, to reduce the number of coefficients. As a result, the transformed coefficients in each subband are represented as

[1.35] Graph Spectral Image Processing - изображение 86

The entire analysis transform is given as follows:

[1.36] The size of is often called the redundancy of the transform The redundancies - фото 87

The size of is often called the redundancy of the transform The redundancies of transforms - фото 88is often called the redundancy of the transform. The redundancies of transforms are classified as follows:

– ρ = 1: critically sampled transform. The number of transformed coefficients is the same as N, i.e. the number of elements in x.

– ρ > 1: oversampled transform. The number of transformed coefficients is larger than N.

– ρ < 1: undersampled transform. The number of transformed coefficients is smaller than N.

If S k= I N, i.e. no sampling is performed, ρ = M , and the transform is called an undecimated transform. In general, undersampled transforms will lose the information of the original signal. They cannot recover the original signal xfrom the transformed coefficients.

After the analysis transformation, an arbitrary linear and nonlinear operation is performed to c kfor a target application. For example, small magnitude elements in c kare thresholded to denoise or compress the signal. Let us denote картинка 89as processed coefficients.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Graph Spectral Image Processing»

Представляем Вашему вниманию похожие книги на «Graph Spectral Image Processing» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Graph Spectral Image Processing»

Обсуждение, отзывы о книге «Graph Spectral Image Processing» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x