Gene Cheung - Graph Spectral Image Processing

Здесь есть возможность читать онлайн «Gene Cheung - Graph Spectral Image Processing» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Graph Spectral Image Processing: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Graph Spectral Image Processing»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing – extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels – provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements.<br /><br />The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.

Graph Spectral Image Processing — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Graph Spectral Image Processing», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Some precomputing methods have been proposed by Hu et al. (2015) and Zhang and Liang (2017), and they are mainly used for image compression. As expected, the GFT yields sparse transformed coefficients for piecewise smooth images/blocks. For those without such piecewise regions, conventional transforms like the DCT and DST are basically included as a set of precomputed bases.

1.6.4. Partial eigendecomposition

To emphasize, the eigendecomposition of the graph operator will need картинка 112complexity in general. In other words, we can reduce the complexity if we can assume graph signals on the underlying graph are bandlimited. Suppose that the signal is K- bandlimited, which is typically defined as

[1.50] Graph Spectral Image Processing - изображение 113

where ||·|| 0represents the number of non-zero elements, i.e. Graph Spectral Image Processing - изображение 114pseudo-norm. Here, without loss of generality, we can assume the first K GFT coefficients are non-zero:

[1.51] Graph Spectral Image Processing - изображение 115

With the GFT basis U, it is equivalently represented as

[1.52] where represents some possible nonzero elements and 153 A partial - фото 116

where × represents some possible non-zero elements and

[1.53] A partial eigendecomposition proposed in literature gives the following - фото 117

A partial eigendecomposition proposed in literature gives the following approximation of L:

[1.54] Evaluating only requires K N eigenvectors and eigenvalues which is - фото 118

Evaluating only requires K (< N ) eigenvectors and eigenvalues, which is significantly less than that obtained using the full eigendecomposition. In general, its computational complexity will be картинка 119.

1.6.5. Polynomial approximation

The previous subsection proposes that we can alleviate the heavy computational burden by assuming the bandlimitedness of the graph signal. However, this requires the assumption on the signal model prior to filtering, but the signal is not bandlimited in general.

In many application scenarios, we often only need the evaluation of xwith a given (linear) matrix function h ( L). That is, the eigenvalues and eigenvectors themselves are often unnecessary . The polynomial approximation methods introduced here enable us to calculate an approximation of y= h ( L) xwithout the (partial) decomposition of the variation operator.

Another advantage of filtering using a polynomial filter function is the vertex localization. The local filtering could capture local variations of pixel values, which are generally preferable. In contrast, filtering in the graph frequency domain ( equation [1.13]) is usually not localized in the vertex domain, because eigenvectors often have global support on the graph. Therefore, localizing graph filter response, both in the vertex and graph frequency domains, has been studied extensively (Shuman et al . 2013; Shuman et al. 2016b; Sakiyama et al. 2016). In fact, the localization of graph spectral filters can be controlled using polynomial filtering.

Polynomial graph filters are defined as follows:

[1.55] where c kis the k th order coefficient of the polynomial It is known that each - фото 120

where c kis the k th order coefficient of the polynomial. It is known that each row of L kcollects its k- hop neighborhood; therefore, equation [1.55]is exactly the K- hop localized in the vertex domain. Note that L kcan be represented as

[1.56] Here we utilized the orthogonality of U We can rewrite equation 155by - фото 121

Here, we utilized the orthogonality of U. We can rewrite equation [1.55]by using equation [1.56]as:

[1.57] Consequently the polynomial graph filter has the following graph frequency - фото 122

Consequently, the polynomial graph filter has the following graph frequency response:

[1.58] Especially the output signal in the vertex domain is given by 159 This - фото 123

Especially, the output signal in the vertex domain is given by

[1.59] This indicates that we do not need to compute specific eigenvalues and - фото 124

This indicates that we do not need to compute specific eigenvalues and eigenvectors for just calculating y. Specifically, we need to evaluate Lx, L 2 x ,..., L K x. Calculating Lz, where zis an arbitrary vector, requires картинка 125complexity. Additionally, Graph Spectral Image Processing - изображение 126is required for computing c k L k x(and it is repeated K times). As a result, the entire complexity will be Graph Spectral Image Processing - изображение 127. It is usually much lower than the partial eigendecomposition. In general, картинка 128therefore, the number of edges is a dominant factor affecting the complexity.

Suppose that a fast computation is required for the spectral response of a graph filter картинка 129, which is not a polynomial. Based on equation [1.59], we can approximate the output yif картинка 130is satisfactorily approximated by a polynomial.

Any polynomial approximation methods, e.g. Taylor expansion, are possible for the above-mentioned polynomial filtering. In GSP, Chebyshev polynomial approximation is implemented frequently. The Chebyshev expansion gives an approximate minimax polynomial, i.e. the maximum approximation error can be reduced.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Graph Spectral Image Processing»

Представляем Вашему вниманию похожие книги на «Graph Spectral Image Processing» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Graph Spectral Image Processing»

Обсуждение, отзывы о книге «Graph Spectral Image Processing» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x