Gene Cheung - Graph Spectral Image Processing

Здесь есть возможность читать онлайн «Gene Cheung - Graph Spectral Image Processing» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Graph Spectral Image Processing: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Graph Spectral Image Processing»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing – extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels – provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements.<br /><br />The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.

Graph Spectral Image Processing — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Graph Spectral Image Processing», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The synthesis transform combines Graph Spectral Image Processing - изображение 90to reconstruct the signal. This is represented as

[1.37] Graph Spectral Image Processing - изображение 91

where Graph Spectral Image Processing - изображение 92is the synthesis transform matrix. The perfect reconstruction transform is defined as the transform that recovers the original signal perfectly, when no processing is performed between the analysis and synthesis transforms. Formally, it satisfies the following condition:

[1.38] Graph Spectral Image Processing - изображение 93

The details of perfect reconstruction graph filter banks are provided in the next section.

While Rcan be arbitrary, one may need a symmetric structure: the synthesis transform represented by multiple filters and upsampling as a counterpart of the analysis transform. In classical signal processing, most filter banks are designed to be symmetric, which, in contrast, is difficult for the graph versions, mainly due to the sampling operations. Several design methods make it possible to design perfect reconstruction graph transforms with a symmetric structure (Narang and Ortega 2012; Narang and Ortega 2013; Shuman et al. 2015; Leonardi and Van De Ville 2013; Tanaka and Sakiyama 2014; Sakiyama and Tanaka 2014; Sakiyama et al. 2016; Sakiyama et al. 2019a; Teke and Vaidyanathan 2016; Sakiyama et al. 2019b).

1.5.2. Perfect reconstruction condition

Suppose that the redundancy is ρ ≥ 1 and the columns of Eare linearly independent. The perfect reconstruction condition equation [1.38]is clearly rewritten as

[1.39] Graph Spectral Image Processing - изображение 94

The critically sampled system constrains that Eis a square matrix; therefore, Rmust be E −1for perfect reconstruction. For the oversampled system, we generally have an infinite number of Rsatisfying the condition in equation [1.39]. The most simple and well-known solution is the least squares solution, which is expressed as

[1.40] This is nothing but the MoorePenrose pseudo inverse of E 4 This GSP system - фото 95

This is nothing but the Moore–Penrose pseudo inverse of E 4 . This GSP system is generally asymmetric: while the analysis transform has graph filters and possible sampling, the synthesis transform does not have such a clear notion of filtering and upsampling. In general, the asymmetric structure requires a matrix inversion. Additionally, the N × N matrix E T Eis usually dense, which leads to картинка 96complexity.

Therefore, symmetric structures are often desired instead, and they are similar to those that are widely used in classical signal processing. The synthesis transform with a symmetric structure has the following form:

[1.41] where g k L is the k th synthesis filter and is an upsampling matrix As a - фото 97

where g k( L) is the k th synthesis filter and is an upsampling matrix As a result each subband has the following - фото 98is an upsampling matrix. As a result, each subband has the following input–output relationship:

[1.42] reconstruction it must be xThe resulting output is therefore represented as - фото 99

reconstruction, it must be x.The resulting output is therefore represented as картинка 100and for perfect reconstruction, it must be x.

1.5.2.1. Design of perfect reconstruction transforms: undecimated case

There are various methods available for designing perfect reconstruction graph transforms. First, let us consider undecimated transforms that exhibit symmetrical structure.

An undecimated transform has no sampling, i.e. S k= I Nfor all k . Therefore, the analysis and synthesis transforms, respectively, are represented in the following simple forms:

[1.43] 144 Accordingly the perfect reconstruction condition can also be simple - фото 101

[1.44] Accordingly the perfect reconstruction condition can also be simple The - фото 102

Accordingly, the perfect reconstruction condition can also be simple. The input–output relationship in equation [1.42]is reduced to

[1.45] Assuming p k L g k L h k L as the k th product filter the output - фото 103

Assuming p k( L) := g k( L) h k( L) as the k th product filter, the output signal is thus given by

[1.46] Therefore the product filters must satisfy the following condition for perfect - фото 104

Therefore, the product filters must satisfy the following condition for perfect reconstruction:

[1.47] where c is some constant Suppose that h k L and g k L are parameterized as - фото 105

where c is some constant.

Suppose that h k( L) and g k( L) are parameterized as and g k L U ĝ k Λ U T respectively In this case equation 147can be - фото 106and g k( L) = U ĝ k( Λ) U T, respectively. In this case, equation [1.47]can be further reduced to

[1.48] where This condition is similar to that considered in biorthogonal FIR filter - фото 107

where This condition is similar to that considered in biorthogonal FIR filter banks - фото 108This condition is similar to that considered in biorthogonal FIR filter banks in classical signal processing (Vaidyanathan 1993; Vetterli and Kovacevic 1995; Strang and Nguyen 1996). When Graph Spectral Image Processing - изображение 109and the filter set satisfies equation [1.48], the filter bank is called a tight frame because the perfect reconstruction condition can be rewritten as

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Graph Spectral Image Processing»

Представляем Вашему вниманию похожие книги на «Graph Spectral Image Processing» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Graph Spectral Image Processing»

Обсуждение, отзывы о книге «Graph Spectral Image Processing» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x