Gene Cheung - Graph Spectral Image Processing

Здесь есть возможность читать онлайн «Gene Cheung - Graph Spectral Image Processing» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Graph Spectral Image Processing: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Graph Spectral Image Processing»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing – extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels – provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements.<br /><br />The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.

Graph Spectral Image Processing — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Graph Spectral Image Processing», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

For the classical Fourier domain filtering, it is enough to consider the frequency range ω ∈ [ π, π ] (or an arbitrary 2 π interval). However, graph frequency varies according to an underlying graph and/or the chosen graph operator. For example, symmetric normalized graph Laplacians have eigenvalues within [0, 2], whereas combinatorial graph Laplacians do not have such a graph-independent maximum bound. The simple maximum bound of combinatorial graph Laplacian is, for example, given as (Anderson Jr and Morley 1985)

[1.16] where d uis the degree of the vertex u Several other improvements on the - фото 44

where d uis the degree of the vertex u . Several other improvements on the bound are also found in literature. Although the graph Laplacians mentioned above have a bound of the largest eigenvalue, such bounds are not applicable to the adjacency matrix. Considering this, appropriate care of the graph frequency range must be taken while designing graph filters.

As mentioned, graph frequency domain filtering is an analog of Fourier domain filtering. However, this does not mean we always obtain a vertex domain expression of this similar to equation [1.9]. Hence, we need to compute the GFT of the input signal, which raises a computational issue described as follows. For the GFT, the eigenvector matrix Uhas to be calculated from the graph operator. The eigendecomposition requires картинка 45complexity for a dense matrix 2 . This calculation often becomes increasingly complex, especially for big data applications, including image processing.

Typically, graph spectral image processing vectorizes image pixels. Let us assume that we have a grayscale image of size W × H pixels. Its vectorized version is картинка 46and its corresponding graph operator would be картинка 47. For example, 4K ultra-high-definition resolution corresponds to W = 3, 840 and H = 2, 160, which leads to WH > 8 × 10 6: this is too large to perform eigendecomposition, even for a recent high-spec computer. In section 1.6, several fast computation methods of graph spectral filtering will be discussed to alleviate this problem.

1.3.3. Relationship between graph spectral filtering and classical filtering

Filtering in the graph frequency domain seems to be an intuitive extension of Fourier domain filtering into the graph setting. In fact, it coincides with time-domain filtering in a special case, beyond the intuition.

Suppose that the underlying graph is a cycle graph with length N , and its graph Laplacian L cycleis assumed as follows:

[1.17] where its blank elements are zero It is well known that the eigenvector matrix - фото 48

where its blank elements are zero. It is well known that the eigenvector matrix of L cycleis the DFT (Strang 1999), i.e.

[1.18] in which 119 In other words when we consider a cycle graph and assume its - фото 49

in which

[1.19] In other words when we consider a cycle graph and assume its associated graph - фото 50

In other words, when we consider a cycle graph and assume its associated graph Laplacian is L cycle, its GFT is the DFT. Therefore, graph spectral filtering in equation [1.13]is identical to the time-domain filtering. Note that, while Uis the DFT, the interval of its eigenvalues is not equal to 2 πk/N . Specificallly, the k th eigenvalue of L cycleis λ k= 2 − 2cos(2 πk/N ).

1.4. Edge-preserving smoothing of images as graph spectral filters

This book (especially this chapter) focuses on graph spectral domain operations for image processing. Here, we describe interconnections between well-studied edge preserving filters and their GSP-based representations. As previously mentioned in this section, pixel-dependent filters do not have frequency domain expressions in a classical sense. This is because the impulse responses vary for different pixel index values n . In the following, we show that such a pixel-dependent filter can be viewed as a graph spectral filter, i.e. it presents a diagonal graph frequency response. Roughly speaking, GSP-based image processing considers the pixel structure and the filter kernel independently. Therefore, the pixel-dependent processing can be performed with a fixed filter kernel, owing to the underlying graph.

1.4.1. Early works

Let us begin with the history before the GSP era. In the mid-1990s, Taubin proposed seminal works on smoothing using graph spectral analysis for 3D mesh processing (Taubin 1995; Taubin et al. 1996) 3 . He determined the edge weights of polygon meshes using the Euclidean (geometric) distance between nodes. Assuming as a 3D coordinate of the i th node the edge weight is then defined as 120 - фото 51as a 3-D coordinate of the i th node, the edge weight is then defined as

[1.20] where η is the normalizing factor and φ p i p j is a nonnegative - фото 52

where η is the normalizing factor and φ ( p i , p j) is a non-negative function, which assigns a large weight if p iand p jare close. The typical choice of φ ( p i , p j) will be Graph Spectral Image Processing - изображение 53

The matrix Wis symmetric. If we choose φ ( p i , p i) = 0, its diagonal elements would become zero, and as a result, Wcould be viewed as a normalized adjacency matrix. The coordinates are then smoothed by a graph low-pass filter, after computing the GFT basis U. Similar approaches to this method have been used in several computer graphics/vision tasks (Zhang et al. 2010; Vallet and Lévy 2008; Desbrun et al. 1999; Fleishman et al. 2003; Kim and Rossignac 2005).

For image smoothing, filtering with a heat kernel represented in the graph frequency domain has also been proposed by Zhang and Hancock (2008). In this work, the edge weights of the pixel graph are computed according to photometric distance, i.e. large weights are assigned to the edges whose ends have similar pixel values and vice versa. Additionally, the graph spectral filter is defined as a solution for the heat equation on the graph, and is expressed as follows:

[1.21] Graph Spectral Image Processing - изображение 54

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Graph Spectral Image Processing»

Представляем Вашему вниманию похожие книги на «Graph Spectral Image Processing» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Graph Spectral Image Processing»

Обсуждение, отзывы о книге «Graph Spectral Image Processing» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x