Gene Cheung - Graph Spectral Image Processing

Здесь есть возможность читать онлайн «Gene Cheung - Graph Spectral Image Processing» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Graph Spectral Image Processing: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Graph Spectral Image Processing»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Graph spectral image processing is the study of imaging data from a graph frequency perspective. Modern image sensors capture a wide range of visual data including high spatial resolution/high bit-depth 2D images and videos, hyperspectral images, light field images and 3D point clouds. The field of graph signal processing – extending traditional Fourier analysis tools such as transforms and wavelets to handle data on irregular graph kernels – provides new flexible computational tools to analyze and process these varied types of imaging data. Recent methods combine graph signal processing ideas with deep neural network architectures for enhanced performances, with robustness and smaller memory requirements.<br /><br />The book is divided into two parts. The first is centered on the fundamentals of graph signal processing theories, including graph filtering, graph learning and graph neural networks. The second part details several imaging applications using graph signal processing tools, including image and video compression, 3D image compression, image restoration, point cloud processing, image segmentation and image classification, as well as the use of graph neural networks for image processing.

Graph Spectral Image Processing — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Graph Spectral Image Processing», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

1.2. Review: filtering of time-domain signals

We start by reviewing the filtering in discrete-time linear time-invariant (LTI) systems, which has been extensively studied in literature. Suppose that a one-dimensional discrete-time signal x nis obtained by sampling its continuous-time counterpart x ( t ) , with a fixed sampling period T , i.e. x n = x ( nT ) . A two-dimensional image signal can be similarly obtained by performing sampling in both the horizontal and vertical directions. In this case, the spatial sampling period usually corresponds to the spacing between an array of photosensors.

Suppose that an impulse response of a filter h nis given a priori . The discrete-time filtered signal y nin the LTI system is calculated from x nand h nby convolution as follows:

[1.1] This equation is based on the shift of the signal or impulse response In LTI - фото 12

This equation is based on the shift of the signal or impulse response. In LTI systems, we (implicitly) assume that the shift of a discrete-time signal is well defined, i.e. x n−kis unique and time invariant. Therefore, equation [1.1]is equivalently represented as

[1.2] where x x 1 x 0 x 1 Tand y y 1 y 0 y 1 T 1 - фото 13

where x:= [..., x −1, x 0, x 1,... ] Tand y:= [..., y −1, y 0, y 1,... ] T. 1

In equation [1.2], the impulse response h kis invariant for n , i.e. the same filter is used for different values of n . Instead, we can use different filters for different values of n to yield y n, whose impulse response h k[ n ] is often defined in a signal-dependent manner, i.e. h k[ n ] картинка 14 h k[ m ] for m n It is formulated as 13 and its matrix form representation is 14 - фото 15 n . It is formulated as

[1.3] and its matrix form representation is 14 Famous image processing filters - фото 16

and its matrix form representation is

[1.4] Famous image processing filters in this category include the bilateral filter - фото 17

Famous image processing filters in this category include the bilateral filter (Tomasi and Manduchi 1998; Barash 2002; Durand and Dorsey 2002; Fleishman et al. 2003), anisotropic diffusion (Weickert 1998; Desbrun et al. 1999), adaptive directional wavelets (Chang and Girod 2007; Ding et al. 2007; Tanaka et al. 2010) and their variants.

It is well known that convolution in the time domain equation [1.1]has an equivalent expression in the frequency (i.e. Fourier) domain as follows:

[1.5] where 16 Here is the discretetime Fourier tran - фото 18

where

[1.6] Here is the discretetime Fourier transform DTFT of x n We utilize the fact - фото 19

Here, картинка 20is the discrete-time Fourier transform (DTFT) of x n. We utilize the fact that convolution in the time domain is identical to multiplication in the frequency domain. Note that the fixed filter has a corresponding fixed frequency response, and thus, we can intuitively understand the filter characteristics from the frequency response. In contrast, the frequency response of a signal-dependent filter is not always clear in general. Fortunately, this drawback can be partially solved with a graph spectral domain perspective, which is described further.

1.3. Filtering of graph signals

In this chapter, we consider linear graph filters. Readers can find nonlinear graph filters, like one used in deep learning, in the following chapters, specifically Chapter 10.

Let us denote a graph filter as HR N×N, where its elements are typically derived from Graph Spectral Image Processing - изображение 21and x. As in the LTI system, the filtered signal is represented as

[1.7] Graph Spectral Image Processing - изображение 22

The representation of its element y nis similar to that observed in equation [1.3], i.e.

[1.8] where nkis the n k element in the matrix Similar to discretetime - фото 23

where [·] n,kis the n, k- element in the matrix. Similar to discrete-time signals, graph signal filtering may be defined in the vertex and graph frequency domains. These are described in the following.

1.3.1. Vertex domain filtering

Vertex domain filtering is an analog of filtering in the time domain. However, GSP systems are not shift-invariant: This means node indices do not have any physical meaning, in general. Therefore, the shift of graph signals based on the indices of nodes, similar to that used for discrete-time signals, would be inappropriate. Moreover, the underlying graph will exhibit a highly irregular connectivity, i.e. the degree in each node will vary significantly. For example, the star graph shown in Figure 1.1has one center node and N 1 surrounding nodes. It is clear that N 1 edges are connected to the center node, i.e. the center node has degree N 1 , whereas all of the surrounding nodes have degree 1 . In an image processing perspective, such an irregularity comes from the edge and texture regions. An example is provided on the right side of Figure 1.1. Suppose that we construct a graph based on pixel intensity, i.e. pixels are nodes, and they are connected by edges with higher weights when their pixel values are closer. In this situation, pixels along edge/texture directions will be connected to each other strongly with a large degree, whereas those across edge/texture directions may have weaker edges, or may even be disconnected. Filtering based on such a graph will therefore reflect structures in the vertex (i.e. pixel) domain.

Figure 11 Left Star graph with N 7 Right Textured region of Barbara - фото 24

Figure 1.1. Left: Star graph with N = 7 . Right: Textured region of Barbara

Vertex domain filtering can be defined more formally as follows. Let картинка 25be a set of p- hop neighborhood nodes of the n th node. Clearly varies according to n Vertex domain filtering may be typically defined as a - фото 26varies according to n .

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Graph Spectral Image Processing»

Представляем Вашему вниманию похожие книги на «Graph Spectral Image Processing» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Graph Spectral Image Processing»

Обсуждение, отзывы о книге «Graph Spectral Image Processing» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x