Lillian Pierson - Data Science For Dummies

Здесь есть возможность читать онлайн «Lillian Pierson - Data Science For Dummies» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Data Science For Dummies: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Data Science For Dummies»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Make smart business decisions with your data by design!  Take a deep dive to understand how developing your data science dogma can drive your business—ya dig? Every phone, tablet, computer, watch, and camera generates data—we’re overwhelmed with the stuff. That’s why it’s become increasingly important that you know how to derive useful insights from the data you have to understand which piece of data in the sea of data is important and which isn’t (trust us: not as scary as it sounds!), and to rely on said data to make critical business decisions. Enter the world of data science: the practice of using scientific methods, processes, and algorithms to gain knowledge and insights from any type of data. 
Data Science For Dummies Data Science For Dummies How natural language processing works Strategies around data science How to make decisions using probabilities Ways to display your data using a visualization model How to incorporate various programming languages into your strategy Whether you’re a professional or a student, 
will get you caught up on all the latest data trends. Find out how to ask the pressing questions you need your data to answer by picking up your copy today.

Data Science For Dummies — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Data Science For Dummies», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
FIGURE 49A comparison of patterns exhibited by time series If youre - фото 95

FIGURE 4-9:A comparison of patterns exhibited by time series.

If you’re including seasonality in your model, incorporate it in the quarterly, monthly, or even biannual period — wherever it’s appropriate. Time series may show nonstationary processes — unpredictable cyclical behavior that isn’t related to seasonality and that results from economic or industry-wide conditions instead. Because they’re not predictable, nonstationary processes can’t be forecasted. You must transform nonstationary data to stationary data before moving forward with an evaluation.

Take a look at the solid lines shown earlier, in Figure 4-9. These represent the mathematical models used to forecast points in the time series. The mathematical models shown represent good, precise forecasts because they’re a close fit to the actual data. The actual data contains some random error, thus making it impossible to forecast perfectly.

Data Science For Dummies - изображение 96For help getting started with time series within the context of the R programming language, be sure to visit the companion website to this book ( http://businessgrowth.ai/ ), where you’ll find a free training and coding demonstration of time series data visualization in R.

Modeling univariate time series data

Similar to how multivariate analysis is the analysis of relationships between multiple variables, univariate analysis is the quantitative analysis of only one variable at a time. When you model univariate time series, you’re modeling time series changes that represent changes in a single variable over time.

Autoregressive moving average (ARMA) is a class of forecasting methods that you can use to predict future values from current and historical data. As its name implies, the family of ARMA models combines autoregression techniques (analyses that assume that previous observations are good predictors of future values and perform an autoregression analysis to forecast for those future values) and moving average techniques — models that measure the level of the constant time series and then update the forecast model if any changes are detected. If you’re looking for a simple model or a model that will work for only a small dataset, the ARMA model isn’t a good fit for your needs. An alternative in this case might be to just stick with simple linear regression. In Figure 4-10, you can see that the model forecast data and the actual data are a close fit.

Data Science For Dummies - изображение 97To use the ARMA model for reliable results, you need to have at least 50 observations.

FIGURE 410An example of an ARMA forecast model Конец ознакомительного - фото 98

FIGURE 4-10An example of an ARMA forecast model.

Конец ознакомительного фрагмента.

Текст предоставлен ООО «ЛитРес».

Прочитайте эту книгу целиком, купив полную легальную версию на ЛитРес.

Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Data Science For Dummies»

Представляем Вашему вниманию похожие книги на «Data Science For Dummies» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Data Science For Dummies»

Обсуждение, отзывы о книге «Data Science For Dummies» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x