Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis

Здесь есть возможность читать онлайн «Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Industrial Data Analytics for Diagnosis and Prognosis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Industrial Data Analytics for Diagnosis and Prognosis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model 
 
In 
, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book’s two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems. 
In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers: 
A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, 
 is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.

Industrial Data Analytics for Diagnosis and Prognosis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Industrial Data Analytics for Diagnosis and Prognosis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

mean(auto.spec.df$curb.weight) var(auto.spec.df$curb.weight) with(auto.spec.df, cov(curb.weight, length)) with(auto.spec.df, cor(curb.weight, length))> mean(auto.spec.df$curb.weight) [1] 2555.566 > var(auto.spec.df$curb.weight) [1] 271107.9 > with(auto.spec.df, cov(curb.weight, length)) [1] 5638.336 > with(auto.spec.df, cor(curb.weight, length)) [1] 0.8777285

Note the results above are somewhat different from those in Example 2.2because in this example we use the entire data set of auto.spec, instead of a small random subset of it as in Example 2.2.

2.2.2 Sample Mean Vector and Sample Covariance Matrix

A multivariate data set consists of n observations collected from n items or units and each observation contains measurements on p variables, x 1, x 2,…, xp . The measurement vector for the i th observation is denoted by

Industrial Data Analytics for Diagnosis and Prognosis - изображение 30

The sample mean vector is the vector of sample means for the p variables, which is defined as

where xk is the sample mean of The sample covariance matrix Sis the matrix - фото 31

where x̄k is the sample mean of The sample covariance matrix Sis the matrix of sample variances and covariances - фото 32

The sample covariance matrix Sis the matrix of sample variances and covariances of the p variables:

The offdiagonal elements of Sis the sample covariances of each pair of - фото 33

The off-diagonal elements of Sis the sample covariances of each pair of variables. For j ≠ k ,

25 The diagonal elements of S sjj j 1 p are the sample variance of - фото 34(2.5)

The diagonal elements of S, sjj , j = 1,…, p are the sample variance of the j th variable. It is easy to see that when k = j , the sample covariance in ( 2.5) is equal to sj 2, the sample variance of the j th variable. So both notations sjj and sj 2represent the sample variance of xj . It is also obvious from ( 2.5) that skj . So the sample covariance matrix Sis a symmetric matrix. The sample covariance matrix Scan also be written by the observation vector x i as

26 Similarly we define the sample correlation matrix as The j k th - фото 35(2.6)

Similarly, we define the sample correlation matrix as

The j k th element of Ris the sample correlation of the j th and k th - фото 36

The ( j , k )th element of Ris the sample correlation of the j th and k th variables:

картинка 37

The sample correlation between a variable and itself is equal to 1. So the diagonal elements of a sample correlation matrix are all equal to 1. The sample correlation matrix Ris obviously symmetric since rjk = rkj .

Example 2.4Consider the data set in Table 2.1. In Example 2.2, we found that 1= 2479.5 and 2= 170.35. Similarly, we can obtain 3= 65.41. So the mean vector of x= ( x 1 x 2 x 3) T is given by

Industrial Data Analytics for Diagnosis and Prognosis - изображение 38

In Example 2.2, we calculated the sample variances, sample covariance, and sample correlation of x 1and x 2. Similarly, we can obtain the sample variance of x 3and its sample covariance and correlation with the other two variables as

Note that while s 23is much smaller than s 13 r 23is greater than r 13 which - фото 39

Note that while s 23is much smaller than s 13, r 23is greater than r 13, which indicates that the linear association between x 2and x 3is stronger than that of x 1and x 3. This clearly shows that the magnitude of the covariance itself is not meaningful in characterizing how strong the relationship of two variables is. Combining all the sample variance, covariance, and correlation information, the sample covariance matrix and sample correlation matrix of x= ( x 1 x 2 x 3) T can be written as

223 Linear Combination of Variables We are often interested in some linear - фото 40

2.2.3 Linear Combination of Variables

We are often interested in some linear combinations of the variables x 1, x 2,…, xp . For example, for the auto_specdata set, two of the variables are city.mpgand highway.mpg. If you expect that 60% of the mileage for a car is on highway and 40% is on local roads, then the average MPG for a car can be estimated as 0.6 × highway.mpg + 0.4 × city.mpg, which is a linear combination of city.mpgand highway.mpg. In general, let c 1, c 2,…, cp be constants and consider the linear combination of the variables x 1, x 2,…, xp given by

Industrial Data Analytics for Diagnosis and Prognosis - изображение 41

For each observation of the data set, the corresponding value of the variable z can be found by

where c T c 1 c 2 cp It can be seen that the sample mean of z is 27 - фото 42

where c T = ( c 1 c 2… cp ). It can be seen that the sample mean of z is

27 The sample variance of z can be found as 28 Because sample variance - фото 43(2.7)

The sample variance of z can be found as

28 Because sample variance is always nonnegative for any c ℛp we have c T - фото 44(2.8)

Because sample variance is always non-negative, for any cℛp we have c T Sc≥ 0 from ( 2.8). Therefore, the sample covariance matrix Sis always a positive semidefinite matrix.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis»

Представляем Вашему вниманию похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis»

Обсуждение, отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x