Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis

Здесь есть возможность читать онлайн «Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Industrial Data Analytics for Diagnosis and Prognosis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Industrial Data Analytics for Diagnosis and Prognosis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model 
 
In 
, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book’s two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems. 
In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers: 
A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, 
 is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.

Industrial Data Analytics for Diagnosis and Prognosis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Industrial Data Analytics for Diagnosis and Prognosis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Industrial Data Analytics for Diagnosis and Prognosis - изображение 63(3.1)

Industrial Data Analytics for Diagnosis and Prognosis - изображение 64

The covariance matrix of Z= CXis

32 The similarity of 32 and 210 is pretty clear When Cis a row - фото 65(3.2)

The similarity of ( 3.2) and (2.10) is pretty clear. When Cis a row vector c T= ( c 1, c 2,…, cp ), CX= c T X= c 1 X 1+ … + cp Xp and

Industrial Data Analytics for Diagnosis and Prognosis - изображение 66(3.3)

Industrial Data Analytics for Diagnosis and Prognosis - изображение 67(3.4)

where μand Σare the mean vector and covariance matrix of X.

Let X 1and X 2denote two subvectors of X, i.e., Industrial Data Analytics for Diagnosis and Prognosis - изображение 68. The mean vector and the covariance matrix of Xcan be partitioned as

35 36 where Σ 11 cov X 1 and Σ 22 cov X 2 The matrix Σ 12contains - фото 69(3.5)

36 where Σ 11 cov X 1 and Σ 22 cov X 2 The matrix Σ 12contains the - фото 70(3.6)

where Σ 11= cov( X 1) and Σ 22= cov( X 2). The matrix Σ 12contains the covariance of each component in X 1and each component in X 2. Based on the symmetry of Σ, we have картинка 71.

3.2 Density Function and Properties of Multivariate Normal Distribution

Normal distribution is the most commonly used distribution for continuous random variables. Many statistical models and inference methods are based on the univariate or multivariate normal distribution. One advantage of the normal distribution is its mathematical tractability. More importantly, the normal distribution turns out to be a good approximation to the “true” population distribution for many sample statistics and real-world data due to the central limit theorem , which says that the summation of a large number of independent observations from any population with the same mean and variance approximately follows a normal distribution.

Recall that a univariate random variable X with mean μ and variance σ 2is normally distributed, which is denoted by X ∼ N ( μ , σ 2), if it has the probability density function

37 The multivariate normal distribution is an extension of the univariate - фото 72(3.7)

The multivariate normal distribution is an extension of the univariate normal distribution. If a p -dimensional random vector Xfollows a multivariate normal distribution with mean vector μ and covariance matrix Σ, the probability density function of Xhas the form

38 We denote the p dimensional normal distribution by Np μ Σ From - фото 73(3.8)

We denote the p -dimensional normal distribution by Np ( μ , Σ).

From ( 3.8), the density of a p -dimensional normal distribution depends on xthrough the term ( xμ ) T Σ −1( xμ), which is the square of the distance from xto Σstandardized by the covariance matrix. Then it is clear that the set of xvalues yielding a constant height for the density form an ellipsoid. The set of points with the same height for the density is called a contour . The constant probability density contour of a p -dimensional normal distribution is:

Industrial Data Analytics for Diagnosis and Prognosis - изображение 74

which forms the surface of an ellipsoid centered at μwith standardized distance between xand μequal to c . And the contour with larger distance c has a smaller height value for the density. It can be shown that the axes of the ellipsoid contours of constant density for the p -dimensional normal distribution are in the directions of the eigenvectors of Σwith lengths proportional to the square roots of the corresponding eigenvalues of Σ.

Example 3.1:Consider a bivariate ( p = 2) normally distributed random vector X= ( X 1 X 2) T . Suppose the mean vector is μ = (0 0) T and the covariance matrix is

Industrial Data Analytics for Diagnosis and Prognosis - изображение 75

So the variance of both variables is equal to one and the covariance matrix coincides with the correlation matrix. The inverse of the covariance matrix is

Industrial Data Analytics for Diagnosis and Prognosis - изображение 76

and | Σ| = 1 − ρ 2. Substituting Σ −1and | Σ| in ( 3.8), we have

39 From 39 if ρ 0 the joint density can be written as f x 1 x 2 - фото 77(3.9)

From ( 3.9), if ρ = 0, the joint density can be written as f ( x 1, x 2) = f ( x 1) f ( x 2), where f ( x ) is the univariate normal density as given in ( 3.7), with μ = 0 and σ = 1. So in this case X 1and X 2are independent. This result is true for general multivariate normal distribution, as discussed later in this section.

By solving the characteristic equation | Σ− λ I| = 0, the two eigenvalues of Σare λ 1= 1 + ρ and λ 2= 1 – ρ . Based on Σv= λ v, the corresponding eigenvectors can be obtained as

Industrial Data Analytics for Diagnosis and Prognosis - изображение 78

So the major axis of the ellipse contour of constant density is along the line x 1= x 2and the minor axis is orthogonal to the major axis. The larger the correlation coefficient ρ , the more elongated the ellipse contour. As an example, two bivariate normal distributions with ρ = 0 and ρ = 0.75 are shown in Figure 3.1(a) and Figure 3.1(b), respectively. Notice how the presence of correlation causes the probability distribution to concentrate along the line x 1= x 2. When ρ = 0, it is easy to see that the constant-density contour is a circle, as shown in Figure 3.2(a). For ρ = 0.75, the constant-density contour is an ellipse shown in Figure 3.2(b).

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis»

Представляем Вашему вниманию похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis»

Обсуждение, отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x