Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis

Здесь есть возможность читать онлайн «Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Industrial Data Analytics for Diagnosis and Prognosis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Industrial Data Analytics for Diagnosis and Prognosis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model 
 
In 
, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book’s two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems. 
In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers: 
A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, 
 is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.

Industrial Data Analytics for Diagnosis and Prognosis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Industrial Data Analytics for Diagnosis and Prognosis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Figure 31 Two bivariate normal distributions a ρ 0 b ρ 075 Figure - фото 79

Figure 3.1 Two bivariate normal distributions, (a) ρ = 0 (b) ρ = 0.75

Figure 32 Contour plots for the distributions in Figure 31 Properties of the - фото 80

Figure 3.2 Contour plots for the distributions in Figure 3.1

Properties of the Multivariate Normal Distribution

We list some of the most useful properties of the multivariate normal distribution. These properties make it convenient to manipulate normal distributions, which is one of the reasons for the popularity of the normal distribution. Suppose the random vector Xfollows a p -dimensional normal distribution Np ( μ,Σ).

Normality of linear combinations of the variables in X. Let c be a vector of constants. From ( 3.3) and ( 3.4), we have E(cT X) = cT μ and var(cT X) (cT Σc. This is true for any random vector X. When X follows a multivariate normal distribution, we have the additional property that cT X also follows a (univariate) normal distribution. That is, if X ∼ Np(μ,Σ, then cT X ∼ N(cT μ, cT Σc). In general, if C is a q × p matrix, CX still follows a multivariate normal distribution. From ( 3.1) and ( 3.2), we have E(CX) = Cμ and cov(CX) = CΣCT. So CX ∼ Nq(Cμ, CΣCT).

Normality of subvectors. Let X1 = (X1, X2,…, Xq) be the subvector of the first q elements of X and X2 = (Xq+1, Xq+2,…, Xp) be the subvector of the remaining p − q elements of X. From ( 3.5) and ( 3.6), μ and Σ can be partitioned as (3.10)where μi and Σii are the mean vector and covariance matrix of Xi, for i = 1, 2. If X follows a multivariate normal distribution, we have the additional property that both X1 and X2 follow a multivariate normal distribution. That is, if X ∼ Np (μ, Σ), then X1 ∼ Nq (μ1, Σ11) and X2 ∼ Np–q (μ2, Σ22). A special case of this property is that each element of X also follows a (univariate) normal distribution. That is, if X ∼ Np (μ, Σ), then Xj ∼ N(μj, σjj), j = 1, 2,…, p. The converse of this result is not true. If each element of a random vector X follows a univariate normal distribution, X may not follow a multivariate normal distribution.

Zero covariance implies independence. If X ∼ Np (μ, Σ) and , the mean vector and covariance matrix of X can be partitioned as in (3.10). The subvectors X1 and X2 are independent if and only if Σ12 = 0. Specifically, for any two elements Xi and Xj of X, Xi and Xj are independent if and only if σij = cov(Xi, Xj) = 0. Note that if Xi and Xj do not follow joint normal distribution, and Xi and Xj are independent, we still have cov(Xi, Xj) = 0. However, the converse is not necessarily true. That is, if cov(Xi, Xj) = 0, Xi and Xj may not be independent.

Conditional distributions are normal. Suppose and the mean vector and covariance matrix of X is given by (3.10). If X1 and X2 are not independent, we have Σ12 ≠ 0 and the conditional distribution of X1 given X2 = x2, is multivariate normal with (3.11) (3.12)Note that the mean vector of the conditional distribution is a linear function of x2. But the covariance matrix of the conditional distribution does not depend on x2. If X1 and X2 are independent, clearly the conditional distribution of X1 given X2 = x2 is simply Nq (μ1, Σ11), the unconditional distribution of X1.

3.3 Maximum Likelihood Estimation for Multivariate Normal Distributions

If the population distribution is assumed to be multivariate normal with mean vector μand covariance matrix Σ. The parameters μand Σcan be estimated from a random sample of n observations x 1, x 2,…, x n. A commonly used method for parameter estimation is the maximum likelihood estimation (MLE), and the estimated parameter values are called the maximum likelihood estimates . The idea of the maximum likelihood estimation is to find μand Σthat maximize the joint density of the x’s, which is called the likelihood function . For multivariate normal distribution, the likelihood function is

313 It is often easier to find the MLE by minimizing the negative log - фото 81(3.13)

It is often easier to find the MLE by minimizing the negative log likelihood function , which is given by

314 Taking the derivative of 314 with respect to μ we have 315 - фото 82(3.14)

Taking the derivative of ( 3.14) with respect to μ, we have

Industrial Data Analytics for Diagnosis and Prognosis - изображение 83(3.15)

Setting the partial derivative in ( 3.15) to zero, the MLE of μis obtained as

Industrial Data Analytics for Diagnosis and Prognosis - изображение 84(3.16)

which is the sample mean vector of the data set x 1, x 2,…, x n . The derivation of the MLE of Σis more involved and beyond the scope of this book. The result is given by

317 where Sis the sample covariance matrix as given in 26 Since the MLE - фото 85(3.17)

where Sis the sample covariance matrix as given in (2.6). Since the MLE картинка 86uses n instead of n – 1 in the denominator, it is a biased estimator. So the sample covariance matrix Sis more commonly used to estimate Σ, especially when n is small.

One useful property of MLE is the invariance property . In general, let картинка 87denote the MLE of the parameter vector θ . Then the MLE of a function of θ , denoted by h (θ), is given by h ( картинка 88). This result makes it very convenient to find the MLE of any function of a parameter, given the MLE of the parameter. For example, based on ( 3.17), it is easy to see that the MLE of the variance of Xj , the j th element of X, is given by

Industrial Data Analytics for Diagnosis and Prognosis - изображение 89

Then based on the invariance property, the MLE of the standard deviation √σ jjis картинка 90.

The MLE has some good asymptotic properties and usually performs well for data sets of large sample sizes. For example, under mild regularity conditions, MLE satisfies the property of consistency, which guarantees that the estimator converges to the true value of the parameter as the sample size becomes infinite. In addition, under certain regularity conditions, the MLE is asymptotically normal and efficient. That is, as the sample size becomes infinite, the distribution of MLE will converge to a normal distribution with variance equal to the optimal asymptotic variance. The details of the regularity conditions are beyond the scope of this book. But these conditions are quite general and often satisfied in common circumstances.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis»

Представляем Вашему вниманию похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis»

Обсуждение, отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x