Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis

Здесь есть возможность читать онлайн «Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Industrial Data Analytics for Diagnosis and Prognosis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Industrial Data Analytics for Diagnosis and Prognosis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model 
 
In 
, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book’s two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems. 
In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers: 
A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, 
 is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.

Industrial Data Analytics for Diagnosis and Prognosis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Industrial Data Analytics for Diagnosis and Prognosis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Industrial Data Analytics for Diagnosis and Prognosis - изображение 116(3.26)

where ∝ stands for “is proportional to”. Note the denominator p ( D ) in the right-hand side of ( 3.25) is a constant which does not depend on the parameter μ. It plays the normalization role to ensure the left-hand side is a valid probability density function and integrates to one. Taking the integral of the right-hand side of ( 3.25) with respect to μand setting it to be equal to one, it is easy to see that

Industrial Data Analytics for Diagnosis and Prognosis - изображение 117

A point estimate of μcan be obtained by maximizing the posterior distribution. This method is called the maximum a posteriori (MAP) estimate. The MAP estimate of μcan be written as

327 From 327 it can be seen that the MAP estimate is closely related to - фото 118(3.27)

From ( 3.27), it can be seen that the MAP estimate is closely related to MLE. Without the prior g ( μ), the MAP is the same as the MLE. So if the prior follows a uniform distribution, the MAP and MLE will be equivalent. Following this argument, if the prior distribution has a flat shape, we expect that the MAP and MLE are similar.

We first consider a simple case where the data follow a univariate normal distribution with unknown mean μ and known variance σ 2. The likelihood function based on a random sample of independent observations D = { x 1, x 2,…, xn } is given by

Industrial Data Analytics for Diagnosis and Prognosis - изображение 119

Based on ( 3.26), we have

Industrial Data Analytics for Diagnosis and Prognosis - изображение 120

where g ( μ ) is the probability density function of the prior distribution. We choose a normal distribution N ( μ 0, σ 0 2) as the prior for μ . This prior is a conjugate prior because the resulting posterior distribution will also be normal. By completing the square in the exponent of the likelihood and prior, the posterior distribution can be obtained as

Industrial Data Analytics for Diagnosis and Prognosis - изображение 121

where

Industrial Data Analytics for Diagnosis and Prognosis - изображение 122(3.28)

Industrial Data Analytics for Diagnosis and Prognosis - изображение 123(3.29)

The posterior mean given in ( 3.28) can be understood as a weighted average of the prior mean μ 0and the sample mean , which is the MLE of μ . When the sample size n is very large, the weight for is close to one and the weight for μ 0is close to 0, and the posterior mean is very close to the MLE, or the sample mean. On the other hand, when n is very small, the posterior mean is very close the prior mean μ 0. Similarly, if the prior variance σ 0 2is very large, the prior distribution has a flat shape and the posterior mean is close to the MLE. Note that because the mode of a normal distribution is equal to the mean, the MAP of μ is exactly μn . Consequently, when n is very large, or when the prior is flat, the MAP is close to the MLE.

Equation ( 3.29) shows the relationship between the posterior variance and the prior variance. It is easier to understand the relationship if we consider the inverse of the variance, which is called the precision . A high (low) precision corresponds to a low (high) variance. Equation ( 3.29) basically says that the posterior precision is equal to the prior precision with an added precision contribution proportional to n . Each observation adds a contribution of картинка 124, the precision of xn , to the posterior precision. When n is very large, the posterior precision becomes very high, or equivalently the posterior variance becomes very small. On the other hand, when n is very small, the posterior precision and variance will be very close to the prior precision and variance. Specifically, when n = 0, the posterior distribution is the same as the prior distribution. We illustrate the posterior distribution of the mean with known variance under various sample sizes in Figure 3.3, where the data are generated from N (2, 1) and the prior distribution of the mean is N (0, 1). It is clear from Figure 3.3 that with sample size n getting larger, the posterior distribution of the mean becomes more and more concentrated at the true mean.

Figure 33 Posterior distribution of the mean with various sample sizes When - фото 125

Figure 3.3 Posterior distribution of the mean with various sample sizes

When the data follow a p -dimensional multivariate normal distribution with unknown mean μand known covariance matrix Σ, the posterior distribution based on a random sample of independent observations D = { x 1, x 2,…, x n} is given by

where g μ is the density of the conjugate prior distribution Np μ 0 Σ 0 - фото 126

where g ( μ) is the density of the conjugate prior distribution Np ( μ 0, Σ 0). Similar to the univariate case, the posterior distribution of μcan be obtained as

Industrial Data Analytics for Diagnosis and Prognosis - изображение 127

where

Industrial Data Analytics for Diagnosis and Prognosis - изображение 128(3.30)

Industrial Data Analytics for Diagnosis and Prognosis - изображение 129(3.31)

where is the sample mean of the data, which is the MLE of μ. It is easy to see the similarity between the results for the univariate data in ( 3.28) and ( 3.29) and the results for the multivariate data in ( 3.30) and ( 3.31). The MAP of μis exactly μ n . Similar to the univariate case, when n is large, or when the prior distribution is flat, the MAP is close to the MLE.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis»

Представляем Вашему вниманию похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis»

Обсуждение, отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x