Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis

Здесь есть возможность читать онлайн «Yong Chen - Industrial Data Analytics for Diagnosis and Prognosis» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Industrial Data Analytics for Diagnosis and Prognosis: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Industrial Data Analytics for Diagnosis and Prognosis»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model 
 
In 
, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book’s two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems. 
In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers: 
A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, 
 is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.

Industrial Data Analytics for Diagnosis and Prognosis — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Industrial Data Analytics for Diagnosis and Prognosis», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать
Industrial Data Analytics for Diagnosis and Prognosis - изображение 16

For a data set y i, i = 1, 2,…, n obtained by multiplying each xi by a constant a , i.e., yi = axi , i = 1, 2,…, n , it is easy to see that

Sample Variance Measure of Spread The sample variance measures the spread of - фото 17

Sample Variance – Measure of Spread

The sample variance measures the spread of the data and is defined as

21 The square root of the sample variance s s 2 is called the sample - фото 18(2.1)

The square root of the sample variance, s = √ s 2, is called the sample standard deviation . The sample standard deviation is of the same measurement unit as the observations. For yi = axi , i = 1,2,…, n , its sample variance is

картинка 19

Sample Covariance and Correlation – Measure of Linear Association Between Two Variables

If each of the n observations of a data set is measured on two variables x 1and x 2, let ( x 11, x 21,..., x n 1) and ( x 12, x 22,..., x n 2) denote the n observations on x 1and x 2, respectively. The sample covariance of x 1and x 2is defined as

22 where x 1and x 2are the sample means of x 1and x 2 respectively The - фото 20(2.2)

where 1and 2are the sample means of x 1and x 2, respectively. The value of sample covariance of two variables is affected by the linear association between them. From ( 2.2), if x 1and x 2have a strong positive linear association, they are usually both above their means or both below their means. Consequently, the product ( x i1− x ¯ 1)( x i2− x ¯ 2) will typically be positive and their sample covariance will have a large positive value. On the other hand, if x 1and x 2have a strong negative linear association, the product ( x i1− x ¯ 1)( x i2− x ¯ 2) will typically be negative and their sample covariance will have a negative value. If y 1and y 2are obtained by multiplying each measurement of x 1and x 2with a 1and a 2, respectively, it is easy to see from ( 2.2) that the sample covariance of y 1and y 2is

картинка 21(2.3)

Equation ( 2.3) says that if the measurements are scaled, for example by changing measurement units, the sample covariance will be scaled correspondingly. The sample covariance’s dependence on the measurement units makes it difficult to determine how large a sample covariance indicates a strong (linear) association between two variables. The sample correlation defined as follows is a measure of linear association that does not depend on the measurement units, or scaling of the variables

24 where s 1and s 2are the sample standard deviation of x 1and x 2 - фото 22(2.4)

where s 1and s 2are the sample standard deviation of x 1and x 2, respectively. The sample correlation ranges between −1 and 1, with values close to 1, −1, and 0 indicating a strong positive linear association, a strong negative linear association, and no linear association, respectively.

Example 2.2To illustrate the calculation of summary statistics, we take a random sample of 10 observations, as shown in Table 2.1, from the auto.specdata set on the variables curb.weight, length, and width. We use x i, i =1,2,3, to represent the three variables:

Table 2.1 A random sample of 10 observations from the auto. spec data set.

x 1 x 2 x 3
3515 190.9 70.3
2300 168.7 64.0
2800 168.9 65.0
2122 166.3 64.4
2293 169.1 66.0
2765 176.8 64.8
2275 171.7 65.5
1890 159.1 64.2
2926 173.2 66.3
1909 158.8 63.6
Industrial Data Analytics for Diagnosis and Prognosis - изображение 23

To obtain the sample covariance for the variables curb.weightand lengthin the data set in Table 2.1, we first calculate the sample means 1, 2, and as By 22 the sample covariance of the two variables can be - фото 24as:

By 22 the sample covariance of the two variables can be obtained as - фото 25 By 22 the sample covariance of the two variables can be obtained as The s - фото 26

By ( 2.2), the sample covariance of the two variables can be obtained as

The s 12value of 43168 itself cannot tell us whether the two variables have a - фото 27

The s 12value of 4316.8 itself cannot tell us whether the two variables have a strong or weak (linear) relationship. Such information can be provided by the correlation. To evaluate the sample correlation, we first need the sample variance of x 1and x 2. By ( 2.1), we have

By 24 we have which is close to 1 and corresponding to a strong positive - фото 28

By ( 2.4), we have

which is close to 1 and corresponding to a strong positive linear association - фото 29

which is close to 1 and corresponding to a strong positive linear association between the curb weight and length of cars.

Example 2.3In R, the sample mean, variance, covariance, and correlation can be found using functions mean(), var(), cov(), and cor(), respectively. For example, the following Rcodes can be used to find the sample mean and sample variance of curb.weight, and the sample covariance and correlation between curb.weightand length, in the auto.specdata set.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis»

Представляем Вашему вниманию похожие книги на «Industrial Data Analytics for Diagnosis and Prognosis» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis»

Обсуждение, отзывы о книге «Industrial Data Analytics for Diagnosis and Prognosis» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x