Ibrahim Dincer - Thermal Energy Storage Systems and Applications

Здесь есть возможность читать онлайн «Ibrahim Dincer - Thermal Energy Storage Systems and Applications» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Thermal Energy Storage Systems and Applications: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Thermal Energy Storage Systems and Applications»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

Thermal Energy Storage Systems and Applications
Provides students and engineers with up-to-date information on methods, models, and approaches in thermal energy storage systems and their applications in thermal management and elsewhere Thermal Energy Storage: Systems and Applications
Thermal Energy Storage: Systems and Applications, Third Edition

Thermal Energy Storage Systems and Applications — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Thermal Energy Storage Systems and Applications», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The motion of a particle must be described relative to an inertial coordinate frame. The one‐dimensional momentum equation at constant velocity can be written as follows:

(1.60) Thermal Energy Storage Systems and Applications - изображение 72

where ∑ F stands for the sum of the external forces acting on the fluid, and mV stands for the kinetic momentum in that direction. Equation (1.60)states that the time rate of change of the linear momentum of the system in the direction of V equals the resultant of all forces acting on the system in the direction of V . The linear momentum equation is a vector equation and is therefore dependent on a set of coordinate directions.

The rate of change of momentum of a control mass can be related to the rate of change of momentum of a control volume via the continuity equation. Then, Eq. (1.60)becomes

(1.61) Here the sum of forces acting on the control volume in any direction is equal - фото 73

Here, the sum of forces acting on the control volume in any direction is equal to the rate of change of momentum of the control volume in that direction plus the net rate of momentum flux from the control volume through its control surface in the same direction.

For a steady flow, if the velocity across the control surface is constant, the momentum equation in scalar form becomes

(1.62) Thermal Energy Storage Systems and Applications - изображение 74

If the mass flow rate Thermal Energy Storage Systems and Applications - изображение 75is constant, Eq. (1.62)can be written as

(1.63) Thermal Energy Storage Systems and Applications - изображение 76

Similar expressions can be written for the y and z directions.

(c) Euler's Equation

Euler's equation is a mathematical statement of Newton's second law of motion, and finds application in an inviscid fluid continuum. This equation states that the product of mass and acceleration of a fluid particle can be equated vectorially with the external forces acting on the particle. Consider a stream tube, as shown in Figure 1.9, with a cross‐sectional area small enough for the velocity to be considered constant along the tube.

The following is a simple form of Euler's equation for a steady flow along a stream tube, representing the relationship in differential form between pressure p , velocity v , density ρ , and elevation z , respectively:

(1.64) For an incompressible fluid ρ is constant the integration of the above - фото 77

For an incompressible fluid ( ρ is constant), the integration of the above equation gives the following expression along the streamline (with respect to s ) for an inviscid fluid:

(1.65) Figure 19 Relationship between velocity pressure elevation and density for - фото 78

Figure 19 Relationship between velocity pressure elevation and density for - фото 79

Figure 1.9 Relationship between velocity, pressure, elevation, and density for a stream tube.

For a compressible fluid, the integration of Eq. (1.64)can only be completed to provide the following:

(1.66) Note that the relationship between 𝜌 and p needs to be known for the given - фото 80

Note that the relationship between 𝜌 and p needs to be known for the given case, and that for gases the relationship can be in the form p 𝜌 n= constant, varying from adiabatic to isothermal conditions, while for a liquid, 𝜌 (d p /d 𝜌 ) = K , which is an adiabatic modulus.

(d) Bernoulli's Equation

This equation can be written for both incompressible and compressible flows. Under certain flow conditions, Bernoulli's equation for incompressible flow is often referred to as a mechanical‐energy equation because of the fact that it is similar to the steady‐flow energy equation obtained from the FLT for an inviscid fluid with no external heat transfer and no external work. It is necessary to point out that for inviscid fluids, viscous forces and surface tension forces are not taken into consideration, leading to negligible viscous effects. The Bernoulli equation is commonly used in a variety of practical applications, particularly in flows in which the losses are negligibly small, for example, in hydraulic systems. The following is the general Bernoulli equation per unit mass for inviscid fluids between any two points:

(1.67) Here each term has a dimension of a length or head scale In this regard u - фото 81

Here, each term has a dimension of a length or head scale. In this regard, u 2/2 g (kinetic energy per unit mass) is referred to as the velocity head, p / 𝜌 g (pressure energy per unit mass) as the pressure head , z (potential energy per unit mass) as the potential head (constant total head), and H (total energy per unit mass) as the total head in meters. Subscripts 1 and 2 denote where the variables are evaluated on the streamline.

The terms in Eq. (1.67)represent energy per unit mass and have the unit of length. Bernoulli's equation can be obtained by dividing each term in Eq. (1.65)by g . These terms, both individually and collectively, indicate the quantities that may be directly converted to produce mechanical energy.

In summary, if we compare Eq. (1.67)with the general energy equation, we see that the Bernoulli equation contains even more restrictions than might first be realized, due to the following main assumptions:

steady flow (common assumption applicable to many flows);

incompressible flow (acceptable if the Mach number is less than 0.3);

frictionless flow along a single streamline (highly restrictive);

no external shaft work or heat transfer occurs between 1 and 2.

(e) Navier–Stokes Equations

The Navier–Stokes equations are the differential expressions of Newton's second law of motion, and are known as constitutive equations for viscous fluids. These equations were named after C.L.M.H. Navier and Sir G.G. Stokes, who are credited with their derivation.

For viscous fluids, two force aspects, namely, a body force and a pressure force on their surface, are taken into consideration. The solution of these equations is dependent upon what flow information is known. The solutions evolving now for such problems have become extremely useful. Recently numerical software packages have been developed in the field of fluid flow for many engineering applications.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Thermal Energy Storage Systems and Applications»

Представляем Вашему вниманию похожие книги на «Thermal Energy Storage Systems and Applications» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Thermal Energy Storage Systems and Applications»

Обсуждение, отзывы о книге «Thermal Energy Storage Systems and Applications» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x