Maria Cristina Mariani - Data Science in Theory and Practice

Здесь есть возможность читать онлайн «Maria Cristina Mariani - Data Science in Theory and Practice» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Data Science in Theory and Practice: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Data Science in Theory and Practice»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

DATA SCIENCE IN THEORY AND PRACTICE delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs,
will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.

Data Science in Theory and Practice — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Data Science in Theory and Practice», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

where

Substituting and into 36 and canceling terms we obtain 37 - фото 394

Substituting and into 36 and canceling terms we obtain 37 for - фото 395and Data Science in Theory and Practice - изображение 396into ( 3.6) and canceling terms, we obtain

(3.7) Data Science in Theory and Practice - изображение 397

for Data Science in Theory and Practice - изображение 398and Data Science in Theory and Practice - изображение 399. We note that the sample correlation is symmetric since картинка 400for all картинка 401and картинка 402.

The sample correlation coefficient is a measure of the linear association between two variables and does not depend on the units of measurement, i.e. when you construct the sample correlation coefficient, the units of measurement that are used cancel out. The sample correlation matrixis analogous to the covariance matrix with correlations in place of covariances:

(3.8) The population correlation matrixsimilar to 38 is defined as follows 39 - фото 403

The population correlation matrixsimilar to ( 3.8) is defined as follows:

(3.9) Data Science in Theory and Practice - изображение 404

where

Data Science in Theory and Practice - изображение 405

We note that even though the signs of the sample correlation and the sample covariance are the same, the correlation is easier to interpret because its magnitude is bounded. It is bounded within the closed interval Data Science in Theory and Practice - изображение 406. To summarize, the sample correlation картинка 407has the following properties:

1 The value of the sample correlation must lie between and inclusive. indicates perfect linear relationship and indicates perfect inverse relationship.

2 The sample correlation measures the strength of the linear association between two variables. If equals to zero, it implies no linear association between the components. Otherwise, the sign of indicates the direction of the association. If is positive, it means that as one variable gets larger the other gets larger. If is negative, it means that as one gets larger, the other gets smaller (often called an “inverse” correlation). A larger value of implies greater linear strength. This is an indication that both variables move in the opposite direction if one variable increases, the other variable decreases with the same magnitude (and vice versa).

Example 3.4Consider the following data matrix introduced in Example 3.1:

Data Science in Theory and Practice - изображение 408

Each receipt yields a pair of measurements, total dollar sales, and number of movies sold. We find the sample correlation as follows Therefore In this example we observe the var - фото 409as follows:

Therefore In this example we observe the variables and - фото 410

Therefore,

In this example we observe the variables and are highly positively correl - фото 411

In this example, we observe the variables картинка 412and картинка 413are highly positively correlated since картинка 414. This implies that if dollar sales ( картинка 415) increases, the number of movies sold ( Data Science in Theory and Practice - изображение 416) also increases.

3.6 Linear Combinations of Variables

Most often, we are interested in linear combinations of the variables Data Science in Theory and Practice - изображение 417. In this section, we investigate the means, variances, and covariances of linear combinations.

Let Data Science in Theory and Practice - изображение 418be constants and consider the linear combination of the elements of the vector Data Science in Theory and Practice - изображение 419,

(3.10) Data Science in Theory and Practice - изображение 420

where Data Science in Theory and Practice - изображение 421. If the same coefficient vector is applied to each in a sample we have 311 For example if - фото 422is applied to each in a sample we have 311 For example if we have - фото 423in a sample, we have

(3.11) For example if we have 361 Linear - фото 424

For example, if we have 361 Linear Combinations of Sample Means The sample mean of - фото 425, we have

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Data Science in Theory and Practice»

Представляем Вашему вниманию похожие книги на «Data Science in Theory and Practice» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Data Science in Theory and Practice»

Обсуждение, отзывы о книге «Data Science in Theory and Practice» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x