Maria Cristina Mariani - Data Science in Theory and Practice

Здесь есть возможность читать онлайн «Maria Cristina Mariani - Data Science in Theory and Practice» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Data Science in Theory and Practice: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Data Science in Theory and Practice»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

DATA SCIENCE IN THEORY AND PRACTICE delivers a comprehensive treatment of the mathematical and statistical models useful for analyzing data sets arising in various disciplines, like banking, finance, health care, bioinformatics, security, education, and social services. Written in five parts, the book examines some of the most commonly used and fundamental mathematical and statistical concepts that form the basis of data science. The authors go on to analyze various data transformation techniques useful for extracting information from raw data, long memory behavior, and predictive modeling. The book offers readers a multitude of topics all relevant to the analysis of complex data sets. Along with a robust exploration of the theory underpinning data science, it contains numerous applications to specific and practical problems. The book also provides examples of code algorithms in R and Python and provides pseudo-algorithms to port the code to any other language. Ideal for students and practitioners without a strong background in data science, readers will also learn from topics like: Analyses of foundational theoretical subjects, including the history of data science, matrix algebra and random vectors, and multivariate analysis A comprehensive examination of time series forecasting, including the different components of time series and transformations to achieve stationarity Introductions to both the R and Python programming languages, including basic data types and sample manipulations for both languages An exploration of algorithms, including how to write one and how to perform an asymptotic analysis A comprehensive discussion of several techniques for analyzing and predicting complex data sets Perfect for advanced undergraduate and graduate students in Data Science, Business Analytics, and Statistics programs,
will also earn a place in the libraries of practicing data scientists, data and business analysts, and statisticians in the private sector, government, and academia.

Data Science in Theory and Practice — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Data Science in Theory and Practice», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The multivariate normal defined thus has many nice properties. The basic one is that the one‐dimensional distributions are all normal, that is, Data Science in Theory and Practice - изображение 288and Data Science in Theory and Practice - изображение 289. This is also true for any marginal. For example, if Data Science in Theory and Practice - изображение 290are the last coordinates, then

So any particular vector of components is normal Conditional distribution of a - фото 291

So any particular vector of components is normal.

Conditional distribution of a multivariate normal is also a multivariate normal. Given that Data Science in Theory and Practice - изображение 292is a Data Science in Theory and Practice - изображение 293and using the vector notations above assuming that Data Science in Theory and Practice - изображение 294and Data Science in Theory and Practice - изображение 295, then we can write the vector and matrix as where the dimensions are accordingly chosen to match the - фото 296and matrix as where the dimensions are accordingly chosen to match the two vectors - фото 297as

where the dimensions are accordingly chosen to match the two vectors and - фото 298

where the dimensions are accordingly chosen to match the two vectors ( картинка 299and картинка 300). Thus, the conditional distribution of картинка 301given for some vector is Furthermore the vectors - фото 302, for some vector is Furthermore the vectors and - фото 303is

Data Science in Theory and Practice - изображение 304

Furthermore, the vectors Data Science in Theory and Practice - изображение 305and Data Science in Theory and Practice - изображение 306are independent. Finally, any affine transformation картинка 307, where картинка 308is a картинка 309matrix and картинка 310is a картинка 311‐dimensional constant vector, is also a multivariate normal with mean vector картинка 312and covariance matrix картинка 313. Please refer to the text by Axler (2015) and Johnson and Wichern (2014) for more details on the Multinomial distribution and Multivariate normal distributions.

2.4 Problems

1 If and are two matrices, prove the following properties of the trace of a matrix..., for a any constant .

2 If and are two matrices, prove the following properties of the determinant of a matrix.det = det .det = det det = det .

3 LetFind .Find .Find .Find .

4 LetFind .Find .Compare and .

5 LetFind .Find .

6 Show that the real symmetric matrixis positive definite for any non‐zero column vector.

7 Prove that if and are positive definite matrices then so is .

8 For what values of is the following matrix positive semidefinite?

9 Decide whether the following matrices are positive definite, negative definite, or neither. Please explain your reasoning.

10 For random variables and , show thatThe variance is the variance of the random variable , while the same holds for the random variable .

3 Multivariate Analysis

3.1 Introduction

Multivariate analysis is the statistical analysis of several variables at once. This is when multiple measurements are made on each experimental unit, and for which the relationship among multivariate measurements and their structure are important to the experiment's understanding. Experimental units are what you apply the treatments to. Many problems in the analysis of life science are multivariate in nature. However the analysis of large multivariable data sets is a major challenge for many research fields. Applications of multivariate techniques are vast. Some includes behavioral and biological sciences, finance, geophysics, medicine, ecology, and many other fields. The materials in this chapter will form the basis of discussion for what will be discussed later in this text.

3.2 Multivariate Analysis: Overview

We begin with the formal definition of multivariate analysis.

Definition 3.1 (Multivariate analysis)Multivariate analysis consists of a collection of techniques that can be used when several measurements are made on each experimental unit.

These measurements (i.e. data) must frequently be arranged and displayed in various ways. We now discuss the concepts underlying the first steps of data organization.

Multivariate data arise whenever an investigator, practitioner, or researcher seeks to study some physical phenomenon and selects a number картинка 314of variables to record. We will use the notation картинка 315to indicate the particular value of the картинка 316th variable that is observed on the картинка 317th unit (i.e. subject ). Hence, картинка 318measurements on картинка 319variables can be displayed as a rectangular array called data matrix картинка 320, of rows and columns The rectangular array - фото 321rows and columns The rectangular array contains the data consisting of all of - фото 322columns:

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Data Science in Theory and Practice»

Представляем Вашему вниманию похожие книги на «Data Science in Theory and Practice» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Data Science in Theory and Practice»

Обсуждение, отзывы о книге «Data Science in Theory and Practice» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x