Aiden A. Bruen - Cryptography, Information Theory, and Error-Correction

Здесь есть возможность читать онлайн «Aiden A. Bruen - Cryptography, Information Theory, and Error-Correction» — ознакомительный отрывок электронной книги совершенно бесплатно, а после прочтения отрывка купить полную версию. В некоторых случаях можно слушать аудио, скачать через торрент в формате fb2 и присутствует краткое содержание. Жанр: unrecognised, на английском языке. Описание произведения, (предисловие) а так же отзывы посетителей доступны на портале библиотеки ЛибКат.

Cryptography, Information Theory, and Error-Correction: краткое содержание, описание и аннотация

Предлагаем к чтению аннотацию, описание, краткое содержание или предисловие (зависит от того, что написал сам автор книги «Cryptography, Information Theory, and Error-Correction»). Если вы не нашли необходимую информацию о книге — напишите в комментариях, мы постараемся отыскать её.

CRYPTOGRAPHY, INFORMATION THEORY, AND ERROR-CORRECTION
A rich examination of the technologies supporting secure digital information transfers from respected leaders in the field Cryptography, Information Theory, and Error-Correction: A Handbook for the 21ST Century
Cryptography, Information Theory, and Error-Correction

Cryptography, Information Theory, and Error-Correction — читать онлайн ознакомительный отрывок

Ниже представлен текст книги, разбитый по страницам. Система сохранения места последней прочитанной страницы, позволяет с удобством читать онлайн бесплатно книгу «Cryptography, Information Theory, and Error-Correction», без необходимости каждый раз заново искать на чём Вы остановились. Поставьте закладку, и сможете в любой момент перейти на страницу, на которой закончили чтение.

Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

The following is an analogy for symmetric encryption: If Awants to send a secret message to B, we can imagine Aputting the message in a strong box, locking the box with a key and mailing it to B. When Breceives the box, he opens it with his key and gets the message. Only Aand Bhave a key for the box, so nobody else can get the secret message.

3.6 Summary of Encryption

We have seen what encryption is and the difference between public key and symmetric cryptography. Public‐key algorithms such as RSA yield computational security which can be breached given sufficient time and computing resources. With RSA, security is weaker for a text message encoded in ASCII than if the message is a random binary string. This is also true for for some symmetric encryption systems. The reason for this reduction in security is attributed to the fact that consecutive characters in a text message are dependent upon each other.

The only mathematical way to assess the security of symmetric systems is through information theory, which is discussed later on in the book. The security depends on the uncertainty pertaining to the key and the uncertainty pertaining to the message. Roughly speaking, the longer the key the more secure the message. One reason for discussing historical ciphers, such as the Vigenère cipher, in this book is to furnish examples of how this works.

With public key algorithms, only one message can fit with a given cipher text. The keys have to be made longer and longer to withstand brute‐force attacks. What the proper length should be is a matter of conjecture and it is one of the “hot‐button” issues in modern cryptography. One the one hand, a financial institution using public key algorithms may not be in a hurry to report that its system has been broken. On the other hand, a successful intruder may not want to report success.

With symmetric systems, one can (at least in theory!) quantify the security which can be measured in Shannon bits . In certain situations, it can be measured exactly; in other situations, it can be estimated experimentally (e.g. with text messages encoded in binary). In general, it may be the case that many messages will fit with a given cipher text so that, in the end, the determination of the message may still be a matter of guesswork. Nowadays, RSA keys should be several hundred decimal digits in length. In bits, they should be at least 2048 bits long.

We should also point out that in some situations, whether dealing with symmetric or public key algorithms, it may be easier or faster to try to guess the message than to guess the key and then to get the message. Furthermore, there is a strong probabilistic component running through all of cryptography, exacerbated by the possibility of transmission errors.

We have not touched on several practical issues here such as message compression, transmission errors, and checking for key equality. These will be dealt with in Parts II and III of the book when the appropriate machinery has been built up.

3.7 The Diffie–Hellman Key Exchange

This is one of the most mathematically elegant algorithms in cryptography. Communicating parties картинка 600and картинка 601end up generating a common secret key, so there is a connection with symmetric encryption. On the other hand, the method of generating the common key is quite similar to the RSA algorithm and indeed is said to have inspired the RSA algorithm. The security of DH, like the security of RSA, is computational.

The DH key exchange may proceed in the following way:

Participants картинка 602, картинка 603wish to generate a common secret key. First, a suitable prime картинка 604is publicly chosen and then a generator картинка 605for картинка 606. Here, a generator картинка 607(which always exists!) has the property that if we take all powers of картинка 608from 1 to Cryptography Information Theory and ErrorCorrection - изображение 609and calculate their remainders when we divide by Cryptography Information Theory and ErrorCorrection - изображение 610, we obtain all possible numbers Cryptography Information Theory and ErrorCorrection - изображение 611in some order (see Chapter 19). Recall that Cryptography Information Theory and ErrorCorrection - изображение 612means the remainder when картинка 613is divided by Cryptography Information Theory and ErrorCorrection - изображение 614. Here, in this section, and in the problems, Cryptography Information Theory and ErrorCorrection - изображение 615and Cryptography Information Theory and ErrorCorrection - изображение 616will be simply denoted by картинка 617.

Procedure . картинка 618, картинка 619choose secret numbers Cryptography Information Theory and ErrorCorrection - изображение 620 Cryptography Information Theory and ErrorCorrection - изображение 621and transmit Cryptography Information Theory and ErrorCorrection - изображение 622 Cryptography Information Theory and ErrorCorrection - изображение 623to картинка 624, картинка 625, respectively.

Читать дальше
Тёмная тема
Сбросить

Интервал:

Закладка:

Сделать

Похожие книги на «Cryptography, Information Theory, and Error-Correction»

Представляем Вашему вниманию похожие книги на «Cryptography, Information Theory, and Error-Correction» списком для выбора. Мы отобрали схожую по названию и смыслу литературу в надежде предоставить читателям больше вариантов отыскать новые, интересные, ещё непрочитанные произведения.


Отзывы о книге «Cryptography, Information Theory, and Error-Correction»

Обсуждение, отзывы о книге «Cryptography, Information Theory, and Error-Correction» и просто собственные мнения читателей. Оставьте ваши комментарии, напишите, что Вы думаете о произведении, его смысле или главных героях. Укажите что конкретно понравилось, а что нет, и почему Вы так считаете.

x